AMD Radeon 880M vs NVIDIA GeForce RTX 3050 Ti Mobile

Spezifikationen von GPUs

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs der Eigenschaften und Leistung der Grafikkarten AMD Radeon 880M und NVIDIA GeForce RTX 3050 Ti Mobile . Mithilfe dieses Vergleichs können Sie herausfinden, welches Modell Ihren Anforderungen am besten entspricht.

Basic

Markenname
AMD
NVIDIA
Erscheinungsdatum
July 2024
May 2021
Plattform
Integrated
Mobile
Modellname
Radeon 880M
GeForce RTX 3050 Ti Mobile
Generation
Navi III IGP
GeForce 30 Mobile
Basis-Takt
400 MHz
735MHz
Boost-Takt
2900 MHz
1035MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
768
2560
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
-
20
Transistoren
25.39 billion
12,000 million
RT-Kerne
16
20
Einheiten berechnen
16
-
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
-
80
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
48
80
L1-Cache
128 KB per Array
128 KB (per SM)
L2-Cache
2 MB
2MB
Bus-Schnittstelle
PCIe 4.0 x8
PCIe 4.0 x16
Foundry
TSMC
Samsung
Prozessgröße
4 nm
8 nm
Architektur
RDNA 3.0
Ampere
TDP (Thermal Design Power)
15W
75W

Speicherspezifikationen

Speichergröße
System Shared
4GB
Speichertyp
System Shared
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
System Shared
128bit
Speichertakt
System Shared
1500MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
System Dependent
192.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
92.80 GPixel/s
33.12 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
139.2 GTexel/s
82.80 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
17.82 TFLOPS
5.299 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
556.8 GFLOPS
82.80 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
8.82 TFlops
5.09 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
1.3
OpenCL-Version
2.1
3.0
OpenGL
4.6
4.6
CUDA
-
8.6
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
Stromanschlüsse
None
None
Shader-Modell
6.7
6.7
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
32
32

Vorteile

AMD Radeon 880M
Radeon 880M
  • Höher Boost-Takt: 2900 MHz (2900 MHz vs 1035MHz)
  • Neuer Erscheinungsdatum: July 2024 (July 2024 vs May 2021)
NVIDIA GeForce RTX 3050 Ti Mobile
GeForce RTX 3050 Ti Mobile
  • Mehr Shading-Einheiten: 2560 (768 vs 2560)
  • Größer Speichergröße: 4GB (System Shared vs 4GB)
  • Höher Bandbreite: 192.0 GB/s (System Dependent vs 192.0 GB/s)

FP32 (float)

Radeon 880M
+73% 8.82 TFlops
GeForce RTX 3050 Ti Mobile
5.09 TFlops

SiliconCat Rangliste

325
Platz 325 unter allen GPU auf unserer Website
97
Platz 97 unter den Mobile GPU auf unserer Website
471
Platz 471 unter allen GPU auf unserer Website
Radeon 880M
GeForce RTX 3050 Ti Mobile

Verwandte GPU-Vergleiche