NVIDIA GeForce MX570 vs AMD Radeon PRO W7500

Spezifikationen von GPUs

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs der Eigenschaften und Leistung der Grafikkarten NVIDIA GeForce MX570 und AMD Radeon PRO W7500 . Mithilfe dieses Vergleichs können Sie herausfinden, welches Modell Ihren Anforderungen am besten entspricht.

Basic

Markenname
NVIDIA
AMD
Erscheinungsdatum
May 2022
August 2023
Plattform
Mobile
Desktop
Modellname
GeForce MX570
Radeon PRO W7500
Generation
GeForce MX
Radeon Pro Navi
Basis-Takt
832MHz
1500MHz
Boost-Takt
1155MHz
1700MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2048
1792
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
16
-
Transistoren
Unknown
13,300 million
RT-Kerne
16
28
Einheiten berechnen
-
28
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
64
-
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
64
112
L1-Cache
128 KB (per SM)
128 KB per Array
L2-Cache
2MB
2MB
Bus-Schnittstelle
PCIe 4.0 x8
PCIe 4.0 x8
Foundry
Samsung
TSMC
Prozessgröße
8 nm
6 nm
Architektur
Ampere
RDNA 3.0
TDP (Thermal Design Power)
25W
70W

Speicherspezifikationen

Speichergröße
2GB
8GB
Speichertyp
GDDR6
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
64bit
128bit
Speichertakt
1500MHz
1344MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
96.00 GB/s
172.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
46.20 GPixel/s
108.8 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
73.92 GTexel/s
190.4 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
4.731 TFLOPS
24.37 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
73.92 GFLOPS
380.8 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
4.544 TFlops
12.186 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
1.3
OpenCL-Version
3.0
2.2
OpenGL
4.6
4.6
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
CUDA
8.6
-
Stromanschlüsse
None
None
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
40
64
Shader-Modell
6.6
6.7
Empfohlene PSU (Stromversorgung)
-
250W

Vorteile

NVIDIA GeForce MX570
GeForce MX570
  • Mehr Shading-Einheiten: 2048 (2048 vs 1792)
AMD Radeon PRO W7500
Radeon PRO W7500
  • Höher Boost-Takt: 1700MHz (1155MHz vs 1700MHz)
  • Größer Speichergröße: 8GB (2GB vs 8GB)
  • Höher Bandbreite: 172.0 GB/s (96.00 GB/s vs 172.0 GB/s)
  • Neuer Erscheinungsdatum: August 2023 (May 2022 vs August 2023)

FP32 (float)

GeForce MX570
4.544 TFlops
Radeon PRO W7500
+168% 12.186 TFlops

SiliconCat Rangliste

113
Platz 113 unter den Mobile GPU auf unserer Website
514
Platz 514 unter allen GPU auf unserer Website
127
Platz 127 unter den Desktop GPU auf unserer Website
258
Platz 258 unter allen GPU auf unserer Website
GeForce MX570
Radeon PRO W7500

Verwandte GPU-Vergleiche