NVIDIA GeForce RTX 4070 Mobile vs NVIDIA GeForce RTX 4070 Ti

Spezifikationen von GPUs

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs der Eigenschaften und Leistung der Grafikkarten NVIDIA GeForce RTX 4070 Mobile und NVIDIA GeForce RTX 4070 Ti . Mithilfe dieses Vergleichs können Sie herausfinden, welches Modell Ihren Anforderungen am besten entspricht.

Basic

Markenname
NVIDIA
NVIDIA
Erscheinungsdatum
January 2023
January 2023
Plattform
Mobile
Desktop
Modellname
GeForce RTX 4070 Mobile
GeForce RTX 4070 Ti
Generation
GeForce 40 Mobile
GeForce 40
Basis-Takt
1395MHz
2310MHz
Boost-Takt
1695MHz
2610MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
4608
7680
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
36
60
Transistoren
Unknown
35,800 million
RT-Kerne
36
60
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
144
240
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
144
240
L1-Cache
128 KB (per SM)
128 KB (per SM)
L2-Cache
32MB
48MB
Bus-Schnittstelle
PCIe 4.0 x16
PCIe 4.0 x16
Foundry
TSMC
TSMC
Prozessgröße
4 nm
4 nm
Architektur
Ada Lovelace
Ada Lovelace
TDP (Thermal Design Power)
115W
285W

Speicherspezifikationen

Speichergröße
8GB
12GB
Speichertyp
GDDR6
GDDR6X
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
128bit
192bit
Speichertakt
2000MHz
1313MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
256.0 GB/s
504.2 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
81.36 GPixel/s
208.8 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
244.1 GTexel/s
626.4 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
15.62 TFLOPS
40.09 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
244.1 GFLOPS
626.4 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
15.616 TFlops
40.078 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
1.3
OpenCL-Version
3.0
3.0
OpenGL
4.6
4.6
CUDA
8.9
8.9
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
Stromanschlüsse
None
1x 16-pin
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
80
Shader-Modell
6.7
6.7
Empfohlene PSU (Stromversorgung)
-
600W

Vorteile

NVIDIA GeForce RTX 4070 Ti
GeForce RTX 4070 Ti
  • Höher Boost-Takt: 2610MHz (1695MHz vs 2610MHz)
  • Mehr Shading-Einheiten: 7680 (4608 vs 7680)
  • Größer Speichergröße: 12GB (8GB vs 12GB)
  • Höher Bandbreite: 504.2 GB/s (256.0 GB/s vs 504.2 GB/s)

Shadow of the Tomb Raider 2160p

GeForce RTX 4070 Mobile
51 Fps
GeForce RTX 4070 Ti
+100% 102 Fps

Shadow of the Tomb Raider 1440p

GeForce RTX 4070 Mobile
98 Fps
GeForce RTX 4070 Ti
+104% 200 Fps

Shadow of the Tomb Raider 1080p

GeForce RTX 4070 Mobile
170 Fps
GeForce RTX 4070 Ti
+71% 290 Fps

Cyberpunk 2077 1440p

GeForce RTX 4070 Mobile
33 Fps
GeForce RTX 4070 Ti
+255% 117 Fps

GTA 5 2160p

GeForce RTX 4070 Mobile
90 Fps
GeForce RTX 4070 Ti
+90% 171 Fps

GTA 5 1440p

GeForce RTX 4070 Mobile
88 Fps
GeForce RTX 4070 Ti
+97% 173 Fps

GTA 5 1080p

GeForce RTX 4070 Mobile
180 Fps
GeForce RTX 4070 Ti
+3% 186 Fps

FP32 (float)

GeForce RTX 4070 Mobile
15.616 TFlops
GeForce RTX 4070 Ti
+157% 40.078 TFlops

3DMark Time Spy

GeForce RTX 4070 Mobile
11612
GeForce RTX 4070 Ti
+100% 23191

Blender

GeForce RTX 4070 Mobile
4010
GeForce RTX 4070 Ti
+82% 7281

OctaneBench

GeForce RTX 4070 Mobile
343
GeForce RTX 4070 Ti
+102% 694

SiliconCat Rangliste

22
Platz 22 unter den Mobile GPU auf unserer Website
175
Platz 175 unter allen GPU auf unserer Website
33
Platz 33 unter den Desktop GPU auf unserer Website
62
Platz 62 unter allen GPU auf unserer Website
GeForce RTX 4070 Mobile
GeForce RTX 4070 Ti

Verwandte GPU-Vergleiche