GeForce RTX 4070 Mobile
NVIDIA GeForce RTX 4070 Mobile vs NVIDIA GeForce RTX 4080 Mobile
GPU-Vergleichsergebnis
Nachfolgend finden Sie die Ergebnisse eines Vergleichs der Eigenschaften und Leistung der Grafikkarten NVIDIA GeForce RTX 4070 Mobile und NVIDIA GeForce RTX 4080 Mobile . Mithilfe dieses Vergleichs können Sie herausfinden, welches Modell Ihren Anforderungen am besten entspricht.
Basic
Markenname
NVIDIA
NVIDIA
Erscheinungsdatum
January 2023
January 2023
Plattform
Mobile
Mobile
Modellname
GeForce RTX 4070 Mobile
GeForce RTX 4080 Mobile
Generation
GeForce 40 Mobile
GeForce 40 Mobile
Basis-Takt
1395MHz
1290MHz
Boost-Takt
1695MHz
1665MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
4608
7424
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
36
58
Transistoren
Unknown
35,800 million
RT-Kerne
36
58
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
144
232
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
144
232
L1-Cache
128 KB (per SM)
128 KB (per SM)
L2-Cache
32MB
48MB
Bus-Schnittstelle
PCIe 4.0 x16
PCIe 4.0 x16
Foundry
TSMC
TSMC
Prozessgröße
4 nm
4 nm
Architektur
Ada Lovelace
Ada Lovelace
TDP (Thermal Design Power)
115W
110W
Speicherspezifikationen
Speichergröße
8GB
12GB
Speichertyp
GDDR6
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
128bit
192bit
Speichertakt
2000MHz
2250MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
256.0 GB/s
432.0 GB/s
Theoretische Leistung
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
81.36 GPixel/s
133.2 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
244.1 GTexel/s
386.3 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
15.62 TFLOPS
24.72 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
244.1 GFLOPS
386.3 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
15.616
TFlops
24.224
TFlops
Verschiedenes
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
1.3
OpenCL-Version
3.0
3.0
OpenGL
4.6
4.6
CUDA
8.9
8.9
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
Stromanschlüsse
None
None
Shader-Modell
6.7
6.7
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
80
Vorteile
GeForce RTX 4070 Mobile
- Höher Boost-Takt: 1695MHz (1695MHz vs 1665MHz)
GeForce RTX 4080 Mobile
- Mehr Shading-Einheiten: 7424 (4608 vs 7424)
- Größer Speichergröße: 12GB (8GB vs 12GB)
- Höher Bandbreite: 432.0 GB/s (256.0 GB/s vs 432.0 GB/s)
Shadow of the Tomb Raider 2160p
GeForce RTX 4070 Mobile
51
Fps
GeForce RTX 4080 Mobile
+69%
86
Fps
Shadow of the Tomb Raider 1440p
GeForce RTX 4070 Mobile
98
Fps
GeForce RTX 4080 Mobile
+60%
157
Fps
Shadow of the Tomb Raider 1080p
GeForce RTX 4070 Mobile
170
Fps
GeForce RTX 4080 Mobile
+19%
202
Fps
Cyberpunk 2077 1440p
GeForce RTX 4070 Mobile
33
Fps
GeForce RTX 4080 Mobile
+30%
43
Fps
GTA 5 2160p
GeForce RTX 4070 Mobile
90
Fps
GeForce RTX 4080 Mobile
+50%
135
Fps
GTA 5 1440p
GeForce RTX 4070 Mobile
88
Fps
GeForce RTX 4080 Mobile
+56%
137
Fps
FP32 (float)
GeForce RTX 4070 Mobile
15.616
TFlops
GeForce RTX 4080 Mobile
+55%
24.224
TFlops
3DMark Time Spy
GeForce RTX 4070 Mobile
11612
GeForce RTX 4080 Mobile
+69%
19674
Blender
GeForce RTX 4070 Mobile
4010
GeForce RTX 4080 Mobile
+59%
6371
OctaneBench
GeForce RTX 4070 Mobile
343
GeForce RTX 4080 Mobile
+63%
559
SiliconCat Rangliste
27
Platz 27 unter den Mobile GPU auf unserer Website
181
Platz 181 unter allen GPU auf unserer Website
13
Platz 13 unter den Mobile GPU auf unserer Website
101
Platz 101 unter allen GPU auf unserer Website
GeForce RTX 4080 Mobile