NVIDIA GeForce RTX 3080 Mobile vs AMD Radeon 780M

Specifications of GPUs

GPU Comparison Result

Below are the results of a comparison of the characteristics and performance of the NVIDIA GeForce RTX 3080 Mobile and AMD Radeon 780M video cards. This comparison will help you determine which one best suits your needs.

Basic

Label Name
NVIDIA
AMD
Launch Date
January 2021
January 2023
Platform
Mobile
Integrated
Model Name
GeForce RTX 3080 Mobile
Radeon 780M
Generation
GeForce 30 Mobile
Navi III IGP
Base Clock
1110MHz
1500MHz
Boost Clock
1545MHz
2900MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
6144
768
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
48
-
Transistors
17,400 million
25,390 million
RT Cores
48
12
Compute Units
-
12
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
192
-
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
192
48
L1 Cache
128 KB (per SM)
128 KB per Array
L2 Cache
4MB
2MB
Bus Interface
PCIe 4.0 x16
PCIe 4.0 x8
Foundry
Samsung
TSMC
Process Size
8 nm
4 nm
Architecture
Ampere
RDNA 3.0
TDP
115W
15W

Memory Specifications

Memory Size
8GB
System Shared
Memory Type
GDDR6
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
System Shared
Memory Clock
1750MHz
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
448.0 GB/s
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
148.3 GPixel/s
92.80 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
296.6 GTexel/s
139.2 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
18.98 TFLOPS
17.82 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
296.6 GFLOPS
556.8 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
19.358 TFlops
8.558 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
1.3
OpenCL Version
3.0
2.1
OpenGL
4.6
4.6
CUDA
8.6
-
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
Power Connectors
None
None
Shader Model
6.6
6.7
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
96
32

Advantages

NVIDIA GeForce RTX 3080 Mobile
GeForce RTX 3080 Mobile
  • More Shading Units: 6144 (6144 vs 768)
  • Larger Memory Size: 8GB (8GB vs System Shared)
  • Higher Bandwidth: 448.0 GB/s (448.0 GB/s vs System Dependent)
AMD Radeon 780M
Radeon 780M
  • Higher Boost Clock: 2900MHz (1545MHz vs 2900MHz)
  • Newer Launch Date: January 2023 (January 2021 vs January 2023)

FP32 (float)

GeForce RTX 3080 Mobile
+126% 19.358 TFlops
Radeon 780M
8.558 TFlops

3DMark Time Spy

GeForce RTX 3080 Mobile
+318% 11528
Radeon 780M
2755

Blender

GeForce RTX 3080 Mobile
+1205% 3171
Radeon 780M
243

SiliconCat Rating

18
Ranks 18 among Mobile GPU on our website
141
Ranks 141 among all GPU on our website
333
Ranks 333 among all GPU on our website
GeForce RTX 3080 Mobile
Radeon 780M

Related GPU Comparisons