AMD Radeon RX 6700 XT vs NVIDIA GeForce RTX 3060 Mobile

Spezifikationen von GPUs

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs der Eigenschaften und Leistung der Grafikkarten AMD Radeon RX 6700 XT und NVIDIA GeForce RTX 3060 Mobile . Mithilfe dieses Vergleichs können Sie herausfinden, welches Modell Ihren Anforderungen am besten entspricht.

Basic

Markenname
AMD
NVIDIA
Erscheinungsdatum
March 2021
January 2021
Plattform
Desktop
Mobile
Modellname
Radeon RX 6700 XT
GeForce RTX 3060 Mobile
Generation
Navi II
GeForce 30 Mobile
Basis-Takt
2321MHz
900MHz
Boost-Takt
2581MHz
1425MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2560
3840
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
-
30
Transistoren
17,200 million
12,000 million
RT-Kerne
40
30
Einheiten berechnen
40
-
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
-
120
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
160
120
L1-Cache
128 KB per Array
128 KB (per SM)
L2-Cache
3MB
3MB
Bus-Schnittstelle
PCIe 4.0 x16
PCIe 4.0 x16
Foundry
TSMC
Samsung
Prozessgröße
7 nm
8 nm
Architektur
RDNA 2.0
Ampere
TDP (Thermal Design Power)
230W
80W

Speicherspezifikationen

Speichergröße
12GB
6GB
Speichertyp
GDDR6
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
192bit
Speichertakt
2000MHz
1750MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
384.0 GB/s
336.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
165.2 GPixel/s
68.40 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
413.0 GTexel/s
171.0 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
26.43 TFLOPS
10.94 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
825.9 GFLOPS
171.0 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
13.206 TFlops
11.384 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
1.3
OpenCL-Version
2.1
3.0
OpenGL
4.6
4.6
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
CUDA
-
8.6
Stromanschlüsse
1x 6-pin + 1x 8-pin
None
Shader-Modell
6.5
6.6
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64
48
Empfohlene PSU (Stromversorgung)
550W
-

Vorteile

AMD Radeon RX 6700 XT
Radeon RX 6700 XT
  • Höher Boost-Takt: 2581MHz (2581MHz vs 1425MHz)
  • Größer Speichergröße: 12GB (12GB vs 6GB)
  • Höher Bandbreite: 384.0 GB/s (384.0 GB/s vs 336.0 GB/s)
  • Neuer Erscheinungsdatum: March 2021 (March 2021 vs January 2021)
NVIDIA GeForce RTX 3060 Mobile
GeForce RTX 3060 Mobile
  • Mehr Shading-Einheiten: 3840 (2560 vs 3840)

Shadow of the Tomb Raider 2160p

Radeon RX 6700 XT
+36% 53 Fps
GeForce RTX 3060 Mobile
39 Fps

Shadow of the Tomb Raider 1440p

Radeon RX 6700 XT
+38% 98 Fps
GeForce RTX 3060 Mobile
71 Fps

Shadow of the Tomb Raider 1080p

Radeon RX 6700 XT
+45% 139 Fps
GeForce RTX 3060 Mobile
96 Fps

GTA 5 2160p

Radeon RX 6700 XT
+23% 87 Fps
GeForce RTX 3060 Mobile
71 Fps

GTA 5 1440p

Radeon RX 6700 XT
+38% 106 Fps
GeForce RTX 3060 Mobile
77 Fps

GTA 5 1080p

Radeon RX 6700 XT
+14% 165 Fps
GeForce RTX 3060 Mobile
145 Fps

FP32 (float)

Radeon RX 6700 XT
+16% 13.206 TFlops
GeForce RTX 3060 Mobile
11.384 TFlops

3DMark Time Spy

Radeon RX 6700 XT
+50% 12821
GeForce RTX 3060 Mobile
8533

Blender

Radeon RX 6700 XT
1566
GeForce RTX 3060 Mobile
+67% 2610

SiliconCat Rangliste

106
Platz 106 unter den Desktop GPU auf unserer Website
215
Platz 215 unter allen GPU auf unserer Website
36
Platz 36 unter den Mobile GPU auf unserer Website
262
Platz 262 unter allen GPU auf unserer Website
Radeon RX 6700 XT
GeForce RTX 3060 Mobile

Verwandte GPU-Vergleiche