NVIDIA GeForce RTX 3060 Mobile vs NVIDIA GeForce RTX 4070

Spezifikationen von GPUs

GPU-Vergleichsergebnis

Nachfolgend finden Sie die Ergebnisse eines Vergleichs der Eigenschaften und Leistung der Grafikkarten NVIDIA GeForce RTX 3060 Mobile und NVIDIA GeForce RTX 4070 . Mithilfe dieses Vergleichs können Sie herausfinden, welches Modell Ihren Anforderungen am besten entspricht.

Basic

Markenname
NVIDIA
NVIDIA
Erscheinungsdatum
January 2021
April 2023
Plattform
Mobile
Desktop
Modellname
GeForce RTX 3060 Mobile
GeForce RTX 4070
Generation
GeForce 30 Mobile
GeForce 40
Basis-Takt
900MHz
1920MHz
Boost-Takt
1425MHz
2475MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
3840
5888
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
30
46
Transistoren
12,000 million
35,800 million
RT-Kerne
30
46
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
120
184
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
120
184
L1-Cache
128 KB (per SM)
128 KB (per SM)
L2-Cache
3MB
36MB
Bus-Schnittstelle
PCIe 4.0 x16
PCIe 4.0 x16
Foundry
Samsung
TSMC
Prozessgröße
8 nm
5 nm
Architektur
Ampere
Ada Lovelace
TDP (Thermal Design Power)
80W
200W

Speicherspezifikationen

Speichergröße
6GB
12GB
Speichertyp
GDDR6
GDDR6X
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
192bit
Speichertakt
1750MHz
1313MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
336.0 GB/s
504.2 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
68.40 GPixel/s
158.4 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
171.0 GTexel/s
455.4 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
10.94 TFLOPS
29.15 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
171.0 GFLOPS
455.4 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
11.384 TFlops
29.73 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
1.3
OpenCL-Version
3.0
3.0
OpenGL
4.6
4.6
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
CUDA
8.6
8.9
Stromanschlüsse
None
1x 16-pin
Shader-Modell
6.6
6.7
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
64
Empfohlene PSU (Stromversorgung)
-
550W

Vorteile

NVIDIA GeForce RTX 4070
GeForce RTX 4070
  • Höher Boost-Takt: 2475MHz (1425MHz vs 2475MHz)
  • Mehr Shading-Einheiten: 5888 (3840 vs 5888)
  • Größer Speichergröße: 12GB (6GB vs 12GB)
  • Höher Bandbreite: 504.2 GB/s (336.0 GB/s vs 504.2 GB/s)
  • Neuer Erscheinungsdatum: April 2023 (January 2021 vs April 2023)

Shadow of the Tomb Raider 2160p

GeForce RTX 3060 Mobile
39 Fps
GeForce RTX 4070
+115% 84 Fps

Shadow of the Tomb Raider 1440p

GeForce RTX 3060 Mobile
71 Fps
GeForce RTX 4070
+121% 157 Fps

Shadow of the Tomb Raider 1080p

GeForce RTX 3060 Mobile
96 Fps
GeForce RTX 4070
+172% 261 Fps

GTA 5 2160p

GeForce RTX 3060 Mobile
71 Fps
GeForce RTX 4070
+101% 143 Fps

GTA 5 1440p

GeForce RTX 3060 Mobile
77 Fps
GeForce RTX 4070
+88% 145 Fps

FP32 (float)

GeForce RTX 3060 Mobile
11.384 TFlops
GeForce RTX 4070
+161% 29.73 TFlops

3DMark Time Spy

GeForce RTX 3060 Mobile
8533
GeForce RTX 4070
+101% 17133

Blender

GeForce RTX 3060 Mobile
2610
GeForce RTX 4070
+130% 6016

OctaneBench

GeForce RTX 3060 Mobile
279
GeForce RTX 4070
+125% 627

SiliconCat Rangliste

42
Platz 42 unter den Mobile GPU auf unserer Website
270
Platz 270 unter allen GPU auf unserer Website
48
Platz 48 unter den Desktop GPU auf unserer Website
89
Platz 89 unter allen GPU auf unserer Website
GeForce RTX 3060 Mobile
GeForce RTX 4070

Verwandte GPU-Vergleiche