Intel Xeon W-2265

Intel Xeon W-2265
Intel Xeon W-2265 is a Workstation processor from Intel. It began to be released in October 2019. The CPU belongs to the Cascade Lake X family. The processor has 12 cores and 24 threads. And the processor is also made using 14 nm technology. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
Intel
Platform
Workstation
Launch Date
October 2019
Model Name
?
The Intel processor number is just one of several factors - along with processor brand, system configurations, and system-level benchmarks - to be considered when choosing the right processor for your computing needs.
W-2265
Code Name
Cascade Lake X

CPU Specifications

Total Cores
?
Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).
12
Total Threads
?
Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.
24
Basic Frequency
3.50 GHz
Max Turbo Frequency
?
Max Turbo Frequency is the maximum single-core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Turbo Boost Max Technology 3.0 and Intel® Thermal Velocity Boost. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.
4.60 GHz
Intel Turbo Boost Technology
?
Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.
2.0
Intel Hyper-Threading Technology
?
Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.
Yes
Intel Turbo Boost Max Technology 3.0 Frequency
?
Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom. Intel® Turbo Boost Max Technology 3.0 frequency is the clock frequency of the CPU when running in this mode.
4.80 GHz
Intel Turbo Boost Max Technology 3.0
?
Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom.
Yes
Cache
?
CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.
19.25 MB
CPU Socket
?
The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.
FCLGA2066
Technology
?
Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.
14 nm
TDP
165 W
PCI Express Version
?
PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.
3.0
Instruction Set
?
The instruction set is a hard program stored inside the CPU that guides and optimizes CPU operations. With these instruction sets, the CPU can run more efficiently. There are many manufacturers that design CPUs, which results in different instruction sets, such as the 8086 instruction set for the Intel camp and the RISC instruction set for the ARM camp. x86, ARM v8, and MIPS are all codes for instruction sets. Instruction sets can be extended; for example, x86 added 64-bit support to create x86-64. Manufacturers developing CPUs that are compatible with a certain instruction set need authorization from the instruction set patent holder. A typical example is Intel authorizing AMD, enabling the latter to develop CPUs compatible with the x86 instruction set.
64-bit
Intel 64
?
Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.
Yes
PCI Express Configurations
?
PCI Express (PCIe) Configurations describe the available PCIe lane configurations that can be used to link to PCIe devices.
x4 | x8 | x16
Max Number of PCI Express Lanes
?
A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.
48

Memory Specifications

Memory Type
?
Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.
DDR4 2933
Max Memory Size
?
Max memory size refers to the maximum memory capacity supported by the processor.
1 TB
Memory Channels
?
The number of memory channels refers to the bandwidth operation for real world application.
4
Bus Speed
8 GT/s
Max Memory Bandwidth
?
Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).
93.85 GB/s
ECC Memory Supported
?
ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.
Yes

Miscellaneous

Intel Deep Learning Boost (Intel DL Boost) on CPU
?
A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.
Yes
Intel Virtualization Technology (VT-x)
?
Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.
Yes
Intel Virtualization Technology for Directed I/O (VT-d)
?
Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.
Yes
Intel Standard Manageability (ISM)
?
Intel® Standard Manageability is the manageability solution for Intel vPro® Essentials platforms and is a subset of Intel® AMT with out-of-band management over Ethernet and Wi-Fi, but no KVM or new life cycle management features.
Intel® SSE4.2 | Intel® AVX | Intel® AVX2 | Intel® AVX-512
Number of AVX-512 FMA Units
2
Enhanced Intel SpeedStep Technology
?
Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.
Yes
Execute Disable Bit
?
Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.
Yes
Intel AES New Instructions
?
Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.
Yes
Intel Volume Management Device (VMD)
?
Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.
Yes
Intel Boot Guard
?
Intel® Device Protection Technology with Boot Guard helps protect the system’s pre-OS environment from viruses and malicious software attacks.
Yes
Intel VT-x with Extended Page Tables (EPT)
?
Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.
Yes
Intel OS Guard
?
Intel OS Guard is a security technology designed to protect operating systems from threats. It is a hardware feature built into Intel processors that helps prevent malicious code from executing in privileged modes of the operating system.
Yes

Passmark CPU

Single Core
2819
Multi Core
26115

Performance

Integer Math
Multi Core
92.8 GOps/Sec
Floating Point Math
Multi Core
57.5 GOps/Sec
Find Prime Numbers
Multi Core
99 M Primes/Sec
Random String Sorting
Multi Core
50.5 M Strings/Sec
Data Encryption
Multi Core
9.7 GB/Sec
Data Compression
Multi Core
389.3 MB/Sec
Physics
Multi Core
1556 Frames/Sec
Extended Instructions
Multi Core
29.5 B Matrices/Sec
Single Thread
Multi Core
2.8 GOps/Sec
Show more

Geekbench 6

Single Core
1544
Multi Core
9832

Geekbench 5

Single Core
1068
Multi Core
11861

Compared to Other CPU

SiliconCat Rating

360
Ranks 360 among all CPU on our website
Geekbench 6 Single Core
Ryzen 7 7736U
AMD, January 2023
1679
Xeon W-2225
Intel, October 2019
1599
Xeon W-2265
Intel, October 2019
1544
EPYC 7F72
AMD, April 2020
1490
Core i9-10980XE
Intel, October 2019
1438
Geekbench 6 Multi Core
Core i5-12600H
Intel, January 2022
11407
Ryzen 5 8500G
AMD, January 2024
10634
Xeon W-2265
Intel, October 2019
9832
Ryzen Embedded V3C48
AMD, September 2022
9237
Core Ultra 5 135U
Intel, December 2023
8755
Geekbench 5 Single Core
Ryzen Threadripper 3970X
AMD, November 2019
1109
Core i5-1145G7E
Intel, July 2020
1090
Xeon W-2265
Intel, October 2019
1068
Core i3-7320
Intel, January 2017
1042
Core i5-10210U
Intel, August 2019
1021
Geekbench 5 Multi Core
Core i9-9940X
Intel, October 2018
14374
Xeon W-2195
Intel, August 2017
12891
Xeon W-2265
Intel, October 2019
11861
Core i9-10900X
Intel, October 2019
10936
Ryzen 7 5700X3D
AMD, January 2024
9962
Passmark CPU Single Core
Xeon E-2324G
Intel, September 2021
2953
Core i9-10900E
Intel, April 2020
2891
Xeon W-2265
Intel, October 2019
2819
Xeon W-2275
Intel, October 2019
2748
Ryzen 9 3950X
AMD, July 2019
2705
Passmark CPU Multi Core
Xeon Platinum 8160
Intel, July 2017
28825
Core i7-13700H
Intel, January 2023
27463
Xeon W-2265
Intel, October 2019
26115
Core i7-12800H
Intel, January 2022
24973
Ryzen 9 6900HS
AMD, January 2022
23708