NVIDIA Quadro RTX 4000

NVIDIA Quadro RTX 4000
NVIDIA Quadro RTX 4000 ist ein Professional-Videobeschleuniger von NVIDIA. Die Veröffentlichung begann in November 2018. Die GPU hat eine Boost-Frequenz von 1545MHz. Es hat auch eine Speicherfrequenz von 1625MHz. Seine Eigenschaften sowie Benchmark-Ergebnisse werden im Folgenden detaillierter vorgestellt.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
November 2018
Modellname
Quadro RTX 4000
Generation
Quadro
Basis-Takt
1005MHz
Boost-Takt
1545MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
2304
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
36
Transistoren
13,600 million
RT-Kerne
36
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
288
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
144
L1-Cache
64 KB (per SM)
L2-Cache
4MB
Bus-Schnittstelle
PCIe 3.0 x16
Foundry
TSMC
Prozessgröße
12 nm
Architektur
Turing
TDP (Thermal Design Power)
160W

Speicherspezifikationen

Speichergröße
8GB
Speichertyp
GDDR6
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
256bit
Speichertakt
1625MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
416.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
98.88 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
222.5 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
14.24 TFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
222.5 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
7.261 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Stromanschlüsse
1x 8-pin
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64
Shader-Modell
6.6
Empfohlene PSU (Stromversorgung)
450W

FP32 (float)

7.261 TFlops

3DMark Time Spy

8013

Blender

1951.49

Vulkan

66795

OpenCL

85184

Im Vergleich zu anderen GPUs

SiliconCat Rangliste

382
Platz 382 unter allen GPU auf unserer Website
FP32 (float)
Radeon RX 5700M
AMD, March 2020
8.084 TFlops
Radeon Pro Vega 48
AMD, March 2019
7.519 TFlops
Quadro RTX 4000
NVIDIA, November 2018
7.261 TFlops
GeForce GTX 1070 Mobile
NVIDIA, August 2016
6.872 TFlops
GeForce RTX 2060 TU104
NVIDIA, January 2020
6.579 TFlops
3DMark Time Spy
13139
RTX 6000 Ada
NVIDIA, December 2022
10122
Quadro RTX 4000
NVIDIA, November 2018
8013
RTX A2000
NVIDIA, August 2021
5805
Radeon RX 590 GME
AMD, March 2020
4346
Blender
RTX 6000 Ada Generation
NVIDIA, December 2022
11804
GeForce RTX 3070 Ti Mobile
NVIDIA, January 2022
3349
Quadro RTX 4000
NVIDIA, November 2018
1951.49
Playstation 5 GPU
AMD, September 2022
990
Radeon Pro W5500
AMD, February 2020
512
Vulkan
Radeon RX 7800 XT
AMD, August 2023
155024
Radeon RX 7600 XT
AMD, May 2023
97007
Quadro RTX 4000
NVIDIA, November 2018
66795
Radeon Pro 5500 XT
AMD, August 2020
39646
GeForce GTX 680
NVIDIA, March 2012
17987
OpenCL
GeForce RTX 4070 Ti
NVIDIA, January 2023
206630
Radeon RX 7700 XT
AMD, August 2023
126692
Quadro RTX 4000
NVIDIA, November 2018
85184
TITAN Xp
NVIDIA, April 2017
63099
GeForce GTX 1650
NVIDIA, April 2019
39502