NVIDIA Quadro RTX 5000 Max Q

NVIDIA Quadro RTX 5000 Max Q
NVIDIA Quadro RTX 5000 Max Q es una GPU de Professional fabricada por NVIDIA. Comenzó a lanzarse en May 2019. La GPU tiene una frecuencia de impulso de 1350MHz. También tiene una frecuencia de memoria de 1500MHz. Sus características, así como los resultados de las pruebas comparativas, se presentan con más detalle a continuación.

Básico

Nombre de Etiqueta
NVIDIA
Plataforma
Professional
Fecha de Lanzamiento
May 2019
Nombre del modelo
Quadro RTX 5000 Max Q
Generación
Quadro Mobile
Reloj base
600MHz
Reloj de impulso
1350MHz
Unidades de sombreado
?
La unidad de procesamiento más fundamental es el Procesador de Secuencias (SP), donde se ejecutan instrucciones y tareas específicas. Las GPU realizan cómputo paralelo, lo que significa que varios SP trabajan simultáneamente para procesar tareas.
3072
Cuenta de SM
?
Múltiples Procesadores de Transmisión (SP), junto con otros recursos, forman un Multiprocesador de Transmisión (SM), que también se conoce como el núcleo principal de una GPU. Estos recursos adicionales incluyen componentes como planificadores de bloques, registros y memoria compartida. El SM puede considerarse como el corazón de la GPU, similar a un núcleo de CPU, donde los registros y la memoria compartida son recursos escasos dentro del SM.
48
Transistores
13,600 million
Núcleos RT
48
Núcleos tensor
?
Los Tensor Cores son unidades de procesamiento especializadas diseñadas específicamente para el aprendizaje profundo, proporcionando un rendimiento de entrenamiento e inferencia más alto en comparación con el entrenamiento FP32. Permiten cálculos rápidos en áreas como la visión por computadora, el procesamiento del lenguaje natural, el reconocimiento de voz, la conversión de texto a voz y las recomendaciones personalizadas. Las dos aplicaciones más destacadas de los Tensor Cores son DLSS (Deep Learning Super Sampling) y AI Denoiser para la reducción de ruido.
384
TMUs
?
Las unidades de mapeo de texturas (TMUs) funcionan como componentes de la GPU, capaces de rotar, escalar y distorsionar imágenes binarias, para luego colocarlas como texturas sobre cualquier plano de un modelo 3D dado. Este proceso se llama mapeo de texturas.
192
Caché L1
64 KB (per SM)
Caché L2
4MB
Interfaz de bus
PCIe 3.0 x16
Fundición
TSMC
Tamaño proceso
12 nm
Arquitectura
Turing
TDP
80W

Especificaciones de Memoria

Tamaño de memoria
16GB
Tipo de memoria
GDDR6
Bus de memoria
?
La anchura del bus de memoria se refiere al número de bits de datos que la memoria de video puede transferir en un solo ciclo de reloj. Cuanto mayor sea la anchura del bus, mayor será la cantidad de datos que se pueden transmitir instantáneamente, lo que lo convierte en uno de los parámetros cruciales de la memoria de video. El ancho de banda de memoria se calcula como: Ancho de banda de memoria = Frecuencia de memoria x Anchura de bus de memoria / 8. Por lo tanto, cuando las frecuencias de memoria son similares, la anchura del bus de memoria determinará el tamaño del ancho de banda de memoria.
256bit
Reloj de memoria
1500MHz
Ancho de banda
?
La "ancho de banda de memoria" se refiere a la tasa de transferencia de datos entre el chip gráfico y la memoria de video. Se mide en bytes por segundo, y la fórmula para calcularlo es: ancho de banda de memoria = frecuencia de trabajo × ancho de bus de memoria / 8 bits.
384.0 GB/s

Rendimiento teórico

Tasa de píxeles
?
La tasa de llenado de píxeles se refiere al número de píxeles que una unidad de procesamiento gráfico (GPU) puede renderizar por segundo, medida en MPíxeles/s (millones de píxeles por segundo) o GPíxeles/s (miles de millones de píxeles por segundo). Es la métrica más comúnmente utilizada para evaluar el rendimiento de procesamiento de píxeles de una tarjeta gráfica.
86.40 GPixel/s
Tasa de texturas
?
La tasa de llenado de texturas se refiere al número de elementos del mapa de textura (texels) que una GPU puede asignar a píxeles en un solo segundo.
259.2 GTexel/s
FP16 (mitad)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
16.59 TFLOPS
FP64 (doble)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
259.2 GFLOPS
FP32 (flotante)
?
Una métrica importante para medir el rendimiento de la GPU es la capacidad de cómputo de punto flotante. Los números de punto flotante de media precisión (16 bits) se utilizan para aplicaciones como el aprendizaje automático, donde se acepta una menor precisión. Los números de punto flotante de precisión simple (32 bits) se utilizan para tareas comunes de procesamiento multimedia y gráfico, mientras que los números de punto flotante de doble precisión (64 bits) son necesarios para la computación científica que requiere un amplio rango numérico y alta precisión.
8.291 TFlops

Misceláneos

Vulkan Versión
?
Vulkan es una API de gráficos y computación multiplataforma de Khronos Group, ofrece alto rendimiento y bajo consumo de CPU. Permite a los desarrolladores controlar la GPU directamente, reduce el overhead de renderización y soporta multi-threading y procesadores multi-núcleo.
1.3
OpenCL Versión
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Conectores de alimentación
None
ROPs
?
La tubería de operaciones raster (ROPs) es principalmente responsable de manejar los cálculos de iluminación y reflexión en los juegos, así como de administrar efectos como el anti-aliasing (AA), alta resolución, humo y fuego. Cuanto más exigentes sean el anti-aliasing y los efectos de iluminación en un juego, mayores serán los requisitos de rendimiento para los ROPs; de lo contrario, puede resultar en una caída brusca en la velocidad de fotogramas.
64
Modelo de sombreado
6.6

FP32 (flotante)

8.291 TFlops

3DMark Time Spy

8037

Blender

1755

OctaneBench

93

Comparado con Otras GPU

SiliconCat Clasificación

352
Ocupa el puesto 352 entre todas las GPU en nuestro sitio web
FP32 (flotante)
Quadro P5000
NVIDIA, October 2016
8.871 TFlops
GeForce GTX 1080 Mobile
NVIDIA, August 2016
8.699 TFlops
Quadro RTX 5000 Max Q
NVIDIA, May 2019
8.291 TFlops
Radeon RX 5700M
AMD, March 2020
8.084 TFlops
Radeon Pro Vega 48
AMD, March 2019
7.519 TFlops
3DMark Time Spy
GeForce RTX 3070
NVIDIA, September 2020
13229
GeForce RTX 4060 Mobile
NVIDIA, January 2023
10188
Quadro RTX 5000 Max Q
NVIDIA, May 2019
8037
GeForce RTX 2060 Mobile
NVIDIA, January 2019
5939
Radeon RX 5500M
AMD, October 2019
4405
Blender
L40S
NVIDIA, October 2022
7254.03
GeForce RTX 3070
NVIDIA, September 2020
3168.35
Quadro RTX 5000 Max Q
NVIDIA, May 2019
1755
Radeon RX 6600M
AMD, May 2021
896
Quadro P4000
NVIDIA, February 2017
469
OctaneBench
GeForce RTX 3060 Ti GA103
NVIDIA, February 2022
366
185
Quadro RTX 5000 Max Q
NVIDIA, May 2019
93
Quadro T1000 Max Q
NVIDIA, May 2019
56
GeForce GTX 780M
NVIDIA, May 2013
28