Top 50

AMD Radeon Pro W6600M

AMD Radeon Pro W6600M

AMD Radeon Pro W6600M is a Mobile video accelerator from AMD. It began to be released in June 2021. The GPU has a boost frequency of 2903MHz. It also has a memory frequency of 1750MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Mobile GPU: 40

Basic

Label Name
AMD
Platform
Mobile
Launch Date
June 2021
Model Name
Radeon Pro W6600M
Generation
Radeon Pro Mobile
Base Clock
2200MHz
Boost Clock
2903MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
Transistors
11,060 million
RT Cores
28
Compute Units
28
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
112
L1 Cache
128 KB per Array
L2 Cache
2MB
Bus Interface
PCIe 4.0 x16
Foundry
TSMC
Process Size
7 nm
Architecture
RDNA 2.0
TDP
90W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
185.8 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
325.1 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
20.81 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
650.3 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
10.607 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.5

FP32 (float)

10.607 TFlops

Compared to Other GPU

50%
57%
85%
Better then 50% GPU over the past year
Better then 57% GPU over the past 3 years
Better then 85% GPU

SiliconCat Rating

40
Ranks 40 among Mobile GPU on our website
284
Ranks 284 among all GPU on our website
FP32 (float)
GeForce GTX 1080 Ti
NVIDIA, March 2017
11.336 TFlops
Arctic Sound 1T
Intel, January 2021
10.838 TFlops
Radeon Pro W6600M
AMD, June 2021
10.607 TFlops
PG506 242
NVIDIA, April 2021
10.113 TFlops
GeForce RTX 2080 Mobile
NVIDIA, January 2019
9.36 TFlops