Top 500

AMD Radeon Pro WX 4100

AMD Radeon Pro WX 4100
AMD Radeon Pro WX 4100 is a Desktop video accelerator from AMD. It began to be released in November 2016. The GPU has a boost frequency of 1201MHz. It also has a memory frequency of 1500MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
Top Desktop GPU: 354

Basic

Label Name
AMD
Platform
Desktop
Launch Date
November 2016
Model Name
Radeon Pro WX 4100
Generation
Radeon Pro
Base Clock
1125MHz
Boost Clock
1201MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1024
Transistors
3,000 million
Compute Units
16
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
64
L1 Cache
16 KB (per CU)
L2 Cache
1024KB
Bus Interface
PCIe 3.0 x8
Foundry
GlobalFoundries
Process Size
14 nm
Architecture
GCN 4.0
TDP
50W

Memory Specifications

Memory Size
4GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
96.00 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
19.22 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
76.86 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
2.460 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
153.7 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
2.411 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_0)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
16
Shader Model
6.4
Suggested PSU
250W

FP32 (float)

2.411 TFlops

Compared to Other GPU

0%
1%
28%
Better then 0% GPU over the past year
Better then 1% GPU over the past 3 years
Better then 28% GPU

SiliconCat Rating

354
Ranks 354 among Desktop GPU on our website
726
Ranks 726 among all GPU on our website
FP32 (float)
Radeon 740M
AMD, January 2023
2.509 TFlops
Radeon HD 8870 OEM
AMD, January 2013
2.459 TFlops
Radeon Pro WX 4100
AMD, November 2016
2.411 TFlops
Radeon R7 265X OEM
AMD, August 2014
2.367 TFlops
GRID K280Q
NVIDIA, June 2013
2.289 TFlops