Top 100

AMD Radeon RX 6900 XTX

AMD Radeon RX 6900 XTX
AMD Radeon RX 6900 XTX is a Desktop video accelerator from AMD. The GPU has a boost frequency of 2435MHz. It also has a memory frequency of 2250MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
Top Desktop GPU: 61

Basic

Label Name
AMD
Platform
Desktop
Model Name
Radeon RX 6900 XTX
Generation
Navi II
Base Clock
2075MHz
Boost Clock
2435MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
5120
Transistors
26,800 million
RT Cores
80
Compute Units
80
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
320
L1 Cache
128 KB per Array
L2 Cache
4MB
Bus Interface
PCIe 4.0 x16
Foundry
TSMC
Process Size
7 nm
Architecture
RDNA 2.0
TDP
330W

Memory Specifications

Memory Size
16GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
2250MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
576.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
311.7 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
779.2 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
49.87 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.558 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
23.945 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
2x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
128
Shader Model
6.5
Suggested PSU
700W

FP32 (float)

23.945 TFlops

Compared to Other GPU

52%
52%
88%
Better then 52% GPU over the past year
Better then 52% GPU over the past 3 years
Better then 88% GPU

SiliconCat Rating

61
Ranks 61 among Desktop GPU on our website
109
Ranks 109 among all GPU on our website
FP32 (float)
32.033 TFlops
RTX A5000
NVIDIA, April 2021
28.322 TFlops
23.945 TFlops
A10M
NVIDIA, February 2022
22.969 TFlops
GeForce RTX 4060 Ti AD104
NVIDIA, April 2024
21.617 TFlops