AMD ROG Ally Extreme GPU

AMD ROG Ally Extreme GPU

AMD ROG Ally Extreme GPU is a Game console video accelerator from AMD. It began to be released in June 2023. The GPU has a boost frequency of 2700MHz. It also has a memory frequency of 1600MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
AMD
Platform
Game console
Launch Date
June 2023
Model Name
ROG Ally Extreme GPU
Generation
Console GPU
Base Clock
1500MHz
Boost Clock
2700MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
768
Transistors
25,390 million
RT Cores
12
Compute Units
12
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
48
L1 Cache
128 KB per Array
L2 Cache
8MB
Foundry
TSMC
Process Size
4 nm
Architecture
RDNA 3.0
TDP
30W

Memory Specifications

Memory Size
16GB
Memory Type
LPDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
64bit
Memory Clock
1600MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
51.20 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
86.40 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
129.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
16.59 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
518.4 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
8.291 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.7

FP32 (float)

8.291 TFlops

3DMark Time Spy

2852

Compared to Other GPU

SiliconCat Rating

334
Ranks 334 among all GPU on our website
FP32 (float)
Radeon RX 6600 LE
AMD, December 2023
8.853 TFlops
GeForce GTX 1080 11Gbps
NVIDIA, April 2017
8.695 TFlops
ROG Ally Extreme GPU
AMD, June 2023
8.291 TFlops
GeForce RTX 4050 Max-Q
NVIDIA, January 2023
8.053 TFlops
Radeon RX 6600S
AMD, January 2022
7.458 TFlops
3DMark Time Spy
GeForce RTX 2060 Max Q
NVIDIA, January 2020
5496
Radeon R9 290X
AMD, October 2013
4068
ROG Ally Extreme GPU
AMD, June 2023
2852
GeForce GTX 670
NVIDIA, May 2012
1806
GeForce MX150
NVIDIA, May 2017
984