AMD Radeon RX 6650M vs AMD Radeon RX 6800M

Specifications of GPUs

GPU Comparison Result

Below are the results of a comparison of the characteristics and performance of the AMD Radeon RX 6650M and AMD Radeon RX 6800M video cards. This comparison will help you determine which one best suits your needs.

Basic

Label Name
AMD
AMD
Launch Date
January 2022
May 2021
Platform
Mobile
Mobile
Model Name
Radeon RX 6650M
Radeon RX 6800M
Generation
Mobility Radeon
Mobility Radeon
Base Clock
2068MHz
2116MHz
Boost Clock
2416MHz
2390MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
2560
Transistors
11,060 million
17,200 million
RT Cores
28
40
Compute Units
28
40
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
112
160
L1 Cache
128 KB per Array
128 KB per Array
L2 Cache
2MB
3MB
Bus Interface
PCIe 4.0 x8
PCIe 4.0 x16
Foundry
TSMC
TSMC
Process Size
7 nm
7 nm
Architecture
RDNA 2.0
RDNA 2.0
TDP
120W
145W

Memory Specifications

Memory Size
8GB
12GB
Memory Type
GDDR6
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
192bit
Memory Clock
2000MHz
2000MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
256.0 GB/s
384.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
154.6 GPixel/s
153.0 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
270.6 GTexel/s
382.4 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
17.32 TFLOPS
24.47 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
541.2 GFLOPS
764.8 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
8.831 TFlops
12.236 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
1.3
OpenCL Version
2.1
2.1
OpenGL
4.6
4.6
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
Power Connectors
None
None
Shader Model
6.5
6.5
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
64

Advantages

AMD Radeon RX 6650M
Radeon RX 6650M
  • Higher Boost Clock: 2416MHz (2416MHz vs 2390MHz)
  • Newer Launch Date: January 2022 (January 2022 vs May 2021)
AMD Radeon RX 6800M
Radeon RX 6800M
  • More Shading Units: 2560 (1792 vs 2560)
  • Larger Memory Size: 12GB (8GB vs 12GB)
  • Higher Bandwidth: 384.0 GB/s (256.0 GB/s vs 384.0 GB/s)

FP32 (float)

Radeon RX 6650M
8.831 TFlops
Radeon RX 6800M
+39% 12.236 TFlops

Blender

Radeon RX 6650M
927
Radeon RX 6800M
+54% 1424

Vulkan

Radeon RX 6650M
71844
Radeon RX 6800M
+36% 97530

OpenCL

Radeon RX 6650M
60223
Radeon RX 6800M
+45% 87271

SiliconCat Rating

56
Ranks 56 among Mobile GPU on our website
323
Ranks 323 among all GPU on our website
38
Ranks 38 among Mobile GPU on our website
255
Ranks 255 among all GPU on our website
Radeon RX 6650M
Radeon RX 6800M

Related GPU Comparisons