AMD Radeon RX 7900M vs AMD Radeon RX 6650M

Specifications of GPUs

GPU Comparison Result

Below are the results of a comparison of the characteristics and performance of the AMD Radeon RX 7900M and AMD Radeon RX 6650M video cards. This comparison will help you determine which one best suits your needs.

Basic

Label Name
AMD
AMD
Launch Date
October 2023
January 2022
Platform
Mobile
Mobile
Model Name
Radeon RX 7900M
Radeon RX 6650M
Generation
Navi Mobile
Mobility Radeon
Base Clock
1825MHz
2068MHz
Boost Clock
2090MHz
2416MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
4608
1792
Transistors
57,700 million
11,060 million
RT Cores
72
28
Compute Units
72
28
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
288
112
L1 Cache
256 KB per Array
128 KB per Array
L2 Cache
6MB
2MB
Bus Interface
PCIe 4.0 x16
PCIe 4.0 x8
Foundry
TSMC
TSMC
Process Size
5 nm
7 nm
Architecture
RDNA 3.0
RDNA 2.0
TDP
180W
120W

Memory Specifications

Memory Size
16GB
8GB
Memory Type
GDDR6
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
128bit
Memory Clock
2250MHz
2000MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
576.0 GB/s
256.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
267.5 GPixel/s
154.6 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
601.9 GTexel/s
270.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
77.05 TFLOPS
17.32 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1204 GFLOPS
541.2 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
37.747 TFlops
8.831 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
1.3
OpenCL Version
2.2
2.1
OpenGL
4.6
4.6
DirectX
12 Ultimate (12_2)
12 Ultimate (12_2)
Power Connectors
None
None
Shader Model
6.7
6.5
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
128
64

Advantages

AMD Radeon RX 7900M
Radeon RX 7900M
  • More Shading Units: 4608 (4608 vs 1792)
  • Larger Memory Size: 16GB (16GB vs 8GB)
  • Higher Bandwidth: 576.0 GB/s (576.0 GB/s vs 256.0 GB/s)
  • Newer Launch Date: October 2023 (October 2023 vs January 2022)
AMD Radeon RX 6650M
Radeon RX 6650M
  • Higher Boost Clock: 2416MHz (2090MHz vs 2416MHz)

FP32 (float)

Radeon RX 7900M
+327% 37.747 TFlops
Radeon RX 6650M
8.831 TFlops

SiliconCat Rating

5
Ranks 5 among Mobile GPU on our website
71
Ranks 71 among all GPU on our website
57
Ranks 57 among Mobile GPU on our website
334
Ranks 334 among all GPU on our website
Radeon RX 7900M
Radeon RX 6650M

Related GPU Comparisons