Top 500

Intel Arc B580

Intel Arc B580
Intel Arc B580 is a Desktop video accelerator from Intel. It began to be released in December 2024. The GPU has a boost frequency of 2800 MHz. It also has a memory frequency of 2400 MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
New this year
Top Desktop GPU: 106

Basic

Label Name
Intel
Platform
Desktop
Launch Date
December 2024
Model Name
Arc B580
Generation
Battlemage(Arc 5)
Base Clock
1700 MHz
Boost Clock
2800 MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2560
Transistors
21.7 billion
RT Cores
20
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
320
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
160
L2 Cache
12 MB
Bus Interface
PCIe 4.0 x8
Foundry
TSMC
Process Size
6 nm
Architecture
Generation 12.7
TDP
175W

Memory Specifications

Memory Size
12GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
192bit
Memory Clock
2400 MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
460.8GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
224.0 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
448.0 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
28.67 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
14.197 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
2x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
80
Shader Model
6.6
Suggested PSU
450 W

FP32 (float)

14.197 TFlops

Blender

1809.7

Compared to Other GPU

22%
25%
78%
Better then 22% GPU over the past year
Better then 25% GPU over the past 3 years
Better then 78% GPU

SiliconCat Rating

106
Ranks 106 among Desktop GPU on our website
210
Ranks 210 among all GPU on our website
FP32 (float)
GeForce RTX 3080 Max Q
NVIDIA, January 2021
15.604 TFlops
Arctic Sound M
Intel, January 2022
14.746 TFlops
Arc B580
Intel, December 2024
14.197 TFlops
Tesla V100 FHHL
NVIDIA, March 2018
13.745 TFlops
Radeon RX 6700 XT
AMD, March 2021
13.206 TFlops
Blender
GeForce RTX 4070 Ti
NVIDIA, January 2023
7281
GeForce RTX 3070 Mobile
NVIDIA, January 2021
3171
Arc B580
Intel, December 2024
1809.7
Radeon RX 6700S
AMD, January 2022
918
GeForce GTX 1650 GDDR6
NVIDIA, April 2020
471