NVIDIA Quadro K3100M

NVIDIA Quadro K3100M

NVIDIA Quadro K3100M is a Professional video accelerator from NVIDIA. It began to be released in July 2013. It also has a memory frequency of 800MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
NVIDIA
Platform
Professional
Launch Date
July 2013
Model Name
Quadro K3100M
Generation
Quadro Mobile
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
768
Transistors
3,540 million
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
64
L1 Cache
16 KB (per SMX)
L2 Cache
512KB
Bus Interface
MXM-B (3.0)
Foundry
TSMC
Process Size
28 nm
Architecture
Kepler
TDP
75W

Memory Specifications

Memory Size
4GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
800MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
102.4 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
11.30 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
45.18 GTexel/s
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
45.18 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.106 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.1
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 (11_0)
CUDA
3.0
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
5.1

FP32 (float)

1.106 TFlops

Compared to Other GPU

SiliconCat Rating

1013
Ranks 1013 among all GPU on our website
FP32 (float)
Radeon R9 M275X
AMD, January 2014
1.16 TFlops
Radeon R9 M365X
AMD, May 2015
1.137 TFlops
Quadro K3100M
NVIDIA, July 2013
1.106 TFlops
T400 4 GB
NVIDIA, May 2021
1.072 TFlops
1.028 TFlops