NVIDIA Quadro P4000

NVIDIA Quadro P4000
NVIDIA Quadro P4000 ist ein Professional-Videobeschleuniger von NVIDIA. Die Veröffentlichung begann in February 2017. Die GPU hat eine Boost-Frequenz von 1480MHz. Es hat auch eine Speicherfrequenz von 1901MHz. Seine Eigenschaften sowie Benchmark-Ergebnisse werden im Folgenden detaillierter vorgestellt.

Basic

Markenname
NVIDIA
Plattform
Professional
Erscheinungsdatum
February 2017
Modellname
Quadro P4000
Generation
Quadro
Basis-Takt
1202MHz
Boost-Takt
1480MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1792
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
14
Transistoren
7,200 million
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
112
L1-Cache
48 KB (per SM)
L2-Cache
2MB
Bus-Schnittstelle
PCIe 3.0 x16
Foundry
TSMC
Prozessgröße
16 nm
Architektur
Pascal
TDP (Thermal Design Power)
105W

Speicherspezifikationen

Speichergröße
8GB
Speichertyp
GDDR5
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
256bit
Speichertakt
1901MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
243.3 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
94.72 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
165.8 GTexel/s
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
82.88 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
165.8 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
5.197 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
OpenCL-Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Stromanschlüsse
1x 6-pin
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
64
Shader-Modell
6.4
Empfohlene PSU (Stromversorgung)
300W

FP32 (float)

5.197 TFlops

Blender

469

OctaneBench

84

OpenCL

42289

Im Vergleich zu anderen GPUs

SiliconCat Rangliste

472
Platz 472 unter allen GPU auf unserer Website
FP32 (float)
FirePro S9170
AMD, July 2015
5.342 TFlops
Quadro P4000
NVIDIA, February 2017
5.197 TFlops
5.09 TFlops
GeForce GTX 1660 Ti Mobile
NVIDIA, April 2019
4.982 TFlops
Blender
Quadro RTX 5000 Max Q
NVIDIA, May 2019
1755
Radeon RX 6600M
AMD, May 2021
896
Quadro P4000
NVIDIA, February 2017
469
GeForce GTX 1050 Ti
NVIDIA, October 2016
233.41
Radeon Pro 5500 XT
AMD, August 2020
82
OctaneBench
GeForce RTX 4070 Mobile
NVIDIA, January 2023
343
Tesla T4
NVIDIA, September 2018
155
Quadro P4000
NVIDIA, February 2017
84
GeForce GTX 1050 Ti Max Q
NVIDIA, January 2018
45
Quadro P620
NVIDIA, February 2018
24
OpenCL
Radeon RX 6700
AMD, June 2021
89509
Radeon RX 6600M
AMD, May 2021
64427
Quadro P4000
NVIDIA, February 2017
42289
GeForce GTX TITAN
NVIDIA, February 2013
25034
GeForce MX350
NVIDIA, February 2020
12811