AMD Instinct MI250

AMD Instinct MI250
AMD Instinct MI250 is a Professional video accelerator from AMD. It began to be released in November 2021. The GPU has a boost frequency of 1700MHz. It also has a memory frequency of 1600MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
AMD
Platform
Professional
Launch Date
November 2021
Model Name
Radeon Instinct MI250
Generation
Radeon Instinct
Base Clock
1000MHz
Boost Clock
1700MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
13312
L1 Cache
16 KB (per CU)
L2 Cache
16MB
Bus Interface
PCIe 4.0 x16
TDP
500W

Memory Specifications

Memory Size
128GB
Memory Type
HBM2e
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
8192bit
Memory Clock
1600MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
3277 GB/s

Theoretical Performance

Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
1414 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
362.1 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
45.26 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
44.35 TFlops

FP32 (float)

44.35 TFlops

Compared to Other GPU

SiliconCat Rating

60
Ranks 60 among all GPU on our website
FP32 (float)
H800 PCIe 80 GB
NVIDIA, March 2022
53.294 TFlops
GeForce RTX 4080
NVIDIA, September 2022
48.725 TFlops
Instinct MI250
AMD, November 2021
44.35 TFlops
GeForce RTX 3090 Ti
NVIDIA, January 2022
39.196 TFlops
GeForce RTX 4090 Mobile
NVIDIA, January 2023
34.316 TFlops