Top 500

AMD Radeon E8950

AMD Radeon E8950

AMD Radeon E8950 is a Mobile video accelerator from AMD. It began to be released in September 2015. The GPU has a boost frequency of 1000MHz. It also has a memory frequency of 1500MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Mobile GPU: 124

Basic

Label Name
AMD
Platform
Mobile
Launch Date
September 2015
Model Name
Radeon E8950
Generation
Embedded
Base Clock
735MHz
Boost Clock
1000MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2048
Transistors
5,000 million
Compute Units
32
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
128
L1 Cache
16 KB (per CU)
L2 Cache
512KB
Bus Interface
MXM-B (3.0)
Foundry
TSMC
Process Size
28 nm
Architecture
GCN 3.0
TDP
95W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
192.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
32.00 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
128.0 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
4.096 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
256.0 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
4.095 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.0
OpenGL
4.6
DirectX
12 (12_0)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.3

FP32 (float)

4.095 TFlops

Compared to Other GPU

0%
17%
56%
Better then 0% GPU over the past year
Better then 17% GPU over the past 3 years
Better then 56% GPU

SiliconCat Rating

124
Ranks 124 among Mobile GPU on our website
551
Ranks 551 among all GPU on our website
FP32 (float)
GeForce GTX 1060 6 GB Rev. 2
NVIDIA, January 2018
4.287 TFlops
Tesla K80
NVIDIA, November 2014
4.195 TFlops
Radeon E8950
AMD, September 2015
4.095 TFlops
Playstation 4 Pro GPU
AMD, November 2016
4.032 TFlops
Radeon R9 380X
AMD, November 2015
3.894 TFlops