Top 500

AMD FirePro S10000

AMD FirePro S10000

AMD FirePro S10000 ist ein Desktop-Videobeschleuniger von AMD. Die Veröffentlichung begann in November 2012. Die GPU hat eine Boost-Frequenz von 950MHz. Es hat auch eine Speicherfrequenz von 1250MHz. Seine Eigenschaften sowie Benchmark-Ergebnisse werden im Folgenden detaillierter vorgestellt.

Top Desktop GPU: 280

Basic

Markenname
AMD
Plattform
Desktop
Erscheinungsdatum
November 2012
Modellname
FirePro S10000
Generation
FirePro
Basis-Takt
825MHz
Boost-Takt
950MHz
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
1792
Transistoren
4,313 million
Einheiten berechnen
28
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
112
L1-Cache
16 KB (per CU)
L2-Cache
768KB
Bus-Schnittstelle
PCIe 3.0 x16
Foundry
TSMC
Prozessgröße
28 nm
Architektur
GCN 1.0
TDP (Thermal Design Power)
375W

Speicherspezifikationen

Speichergröße
3GB
Speichertyp
GDDR5
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
384bit
Speichertakt
1250MHz
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
240.0 GB/s

Theoretische Leistung

Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
30.40 GPixel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
106.4 GTexel/s
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
851.2 GFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
3.473 TFlops

Verschiedenes

Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.2
OpenCL-Version
1.2
OpenGL
4.6
DirectX
12 (11_1)
Stromanschlüsse
2x 8-pin
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
32
Shader-Modell
5.1
Empfohlene PSU (Stromversorgung)
750W

FP32 (float)

3.473 TFlops

Vulkan

34145

OpenCL

30631

Im Vergleich zu anderen GPUs

0%
4%
42%
Besser als 0% GPU im letzten Jahr
Besser als 4% GPU in den letzten 3 Jahren
Besser als 42% GPU

SiliconCat Rangliste

280
Platz 280 unter den Desktop GPU auf unserer Website
598
Platz 598 unter allen GPU auf unserer Website
FP32 (float)
Radeon HD 7970 X2
AMD, August 2012
3.788 TFlops
Tesla M6
NVIDIA, August 2015
3.624 TFlops
FirePro S10000
AMD, November 2012
3.473 TFlops
Radeon Pro 5300M
AMD, November 2019
3.33 TFlops
Radeon 680M
AMD, January 2022
3.245 TFlops
Vulkan
Radeon RX 6850M XT
AMD, January 2022
98839
Radeon RX 6700S
AMD, January 2022
69708
Radeon RX 580 2048SP
AMD, October 2018
40716
FirePro S10000
AMD, November 2012
34145
GeForce 940M
NVIDIA, March 2015
5522
OpenCL
Radeon RX 6600
AMD, October 2021
71022
GeForce GTX 1070 Ti
NVIDIA, November 2017
51251
FirePro S10000
AMD, November 2012
30631
GeForce GTX 950
NVIDIA, August 2015
16262
GeForce GTX 750
NVIDIA, February 2014
9946