Top 50

AMD Radeon PRO W7700

AMD Radeon PRO W7700

AMD Radeon PRO W7700 is a Desktop video accelerator from AMD. It began to be released in November 2023. The GPU has a boost frequency of 2600MHz. It also has a memory frequency of 2250MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

New this year
Top Desktop GPU: 46

Basic

Label Name
AMD
Platform
Desktop
Launch Date
November 2023
Model Name
Radeon PRO W7700
Generation
Radeon Pro Navi
Base Clock
1900MHz
Boost Clock
2600MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
3072
Transistors
28,100 million
RT Cores
48
Compute Units
48
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
192
L1 Cache
128 KB per Array
L2 Cache
2MB
Bus Interface
PCIe 4.0 x16
Foundry
TSMC
Process Size
5 nm
Architecture
RDNA 3.0
TDP
190W

Memory Specifications

Memory Size
16GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
2250MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
576.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
249.6 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
499.2 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
63.90 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
998.4 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
31.308 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.2
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
1x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
96
Shader Model
6.7
Suggested PSU
450W

FP32 (float)

31.308 TFlops

OpenCL

115655

Compared to Other GPU

42%
63%
90%
Better then 42% GPU over the past year
Better then 63% GPU over the past 3 years
Better then 90% GPU

SiliconCat Rating

46
Ranks 46 among Desktop GPU on our website
82
Ranks 82 among all GPU on our website
FP32 (float)
GeForce RTX 4070 Ti
NVIDIA, January 2023
40.078 TFlops
Radeon RX 7800M
AMD, September 2024
35.511 TFlops
Radeon PRO W7700
AMD, November 2023
31.308 TFlops
RTX 4000 Ada Generation
NVIDIA, August 2023
27.813 TFlops
RTX A4500
NVIDIA, November 2021
23.175 TFlops
OpenCL
L40S
NVIDIA, October 2022
362331
Radeon PRO W7800
AMD, April 2023
147444
Radeon PRO W7700
AMD, November 2023
115655
Radeon RX 6600S
AMD, January 2022
66774
Radeon RX 6550M
AMD, January 2023
46389

Related GPU Comparisons