Top 500

AMD Radeon Pro WX 3100

AMD Radeon Pro WX 3100

AMD Radeon Pro WX 3100 is a Desktop video accelerator from AMD. It began to be released in June 2017. The GPU has a boost frequency of 1219MHz. It also has a memory frequency of 1500MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 447

Basic

Label Name
AMD
Platform
Desktop
Launch Date
June 2017
Model Name
Radeon Pro WX 3100
Generation
Radeon Pro Polaris
Base Clock
925MHz
Boost Clock
1219MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
512
Transistors
2,200 million
Compute Units
8
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
32
L1 Cache
16 KB (per CU)
L2 Cache
512KB
Bus Interface
PCIe 3.0 x8
Foundry
GlobalFoundries
Process Size
14 nm
Architecture
GCN 4.0
TDP
65W

Memory Specifications

Memory Size
4GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
96.00 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
19.50 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
39.01 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
1248 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
78.02 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.199 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_0)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
16
Shader Model
6.7
Suggested PSU
250W

FP32 (float)

1.199 TFlops

Vulkan

11767

OpenCL

9984

Compared to Other GPU

0%
0%
7%
Better then 0% GPU over the past year
Better then 0% GPU over the past 3 years
Better then 7% GPU

SiliconCat Rating

447
Ranks 447 among Desktop GPU on our website
978
Ranks 978 among all GPU on our website
FP32 (float)
Radeon E9171 MCM
AMD, October 2017
1.247 TFlops
Radeon Pro WX 2100
AMD, June 2017
1.223 TFlops
Radeon Pro WX 3100
AMD, June 2017
1.199 TFlops
Radeon 540 Mobile
AMD, March 2019
1.174 TFlops
GeForce GTX 850A
NVIDIA, March 2014
1.15 TFlops
Vulkan
Radeon RX 6850M XT
AMD, January 2022
98839
Radeon RX 6700S
AMD, January 2022
69708
Radeon RX 580 2048SP
AMD, October 2018
40716
P106 090
NVIDIA, July 2017
18660
Radeon Pro WX 3100
AMD, June 2017
11767
OpenCL
Radeon Pro V520
AMD, December 2020
61570
Radeon RX 6500M
AMD, January 2022
38630
Radeon R9 M290X
AMD, January 2014
21442
Radeon Pro 455
AMD, October 2016
11291
Radeon Pro WX 3100
AMD, June 2017
9984