Top 500

AMD Radeon RX 5500M

AMD Radeon RX 5500M

AMD Radeon RX 5500M is a Mobile video accelerator from AMD. It began to be released in October 2019. The GPU has a boost frequency of 1645MHz. It also has a memory frequency of 1750MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Mobile GPU: 111

Basic

Label Name
AMD
Platform
Mobile
Launch Date
October 2019
Model Name
Radeon RX 5500M
Generation
Mobility Radeon
Base Clock
1375MHz
Boost Clock
1645MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1408
Transistors
6,400 million
Compute Units
22
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
88
L2 Cache
2MB
Bus Interface
PCIe 4.0 x8
Foundry
TSMC
Process Size
7 nm
Architecture
RDNA 1.0
TDP
85W

Memory Specifications

Memory Size
4GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
52.64 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
144.8 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
9.265 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
289.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
4.63 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.5

FP32 (float)

4.63 TFlops

3DMark Time Spy

4405

Blender

369

Compared to Other GPU

0%
20%
60%
Better then 0% GPU over the past year
Better then 20% GPU over the past 3 years
Better then 60% GPU

SiliconCat Rating

111
Ranks 111 among Mobile GPU on our website
511
Ranks 511 among all GPU on our website
FP32 (float)
GeForce RTX 3050 A Mobile
NVIDIA, January 2024
4.861 TFlops
Radeon RX 570 Mobile
AMD, December 2017
4.745 TFlops
Radeon RX 5500M
AMD, October 2019
4.63 TFlops
Radeon 760M
AMD, January 2023
4.387 TFlops
GeForce GTX 1060 6 GB Rev. 2
NVIDIA, January 2018
4.287 TFlops
3DMark Time Spy
Quadro RTX 5000 Max Q
NVIDIA, May 2019
8037
GeForce RTX 2060 Mobile
NVIDIA, January 2019
5939
Radeon RX 5500M
AMD, October 2019
4405
Radeon R9 380X
AMD, November 2015
3173
GeForce GTX 1050 Max Q
NVIDIA, January 2018
1997
Blender
Radeon RX 6950 XT
AMD, May 2022
2864
Radeon RX 7600M
AMD, January 2023
1338
GeForce GTX 1070 GDDR5X
NVIDIA, December 2018
561
Radeon RX 5500M
AMD, October 2019
369
Radeon Vega 8
AMD, January 2021
62