AMD Radeon RX Vega 11

AMD Radeon RX Vega 11
AMD Radeon RX Vega 11 is a Integrated video accelerator from AMD. It began to be released in July 2019. The GPU has a boost frequency of 1400MHz. It also has a memory frequency of SystemShared. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
AMD
Platform
Integrated
Launch Date
July 2019
Model Name
Radeon RX Vega 11
Generation
Picasso
Base Clock
300MHz
Boost Clock
1400MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
704
Transistors
4,940 million
Compute Units
11
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
44
Bus Interface
IGP
Foundry
GlobalFoundries
Process Size
14 nm
Architecture
GCN 5.0
TDP
15W

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
11.20 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
61.60 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
3.942 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
123.2 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1.97 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
8
Shader Model
6.4

FP32 (float)

1.97 TFlops

Blender

92

Hashcat

71266 H/s

Compared to Other GPU

SiliconCat Rating

807
Ranks 807 among all GPU on our website
FP32 (float)
GeForce GTX 760 OEM Rebrand
NVIDIA, August 2013
2.045 TFlops
Radeon R7 360 896SP
AMD, June 2015
2.01 TFlops
Radeon RX Vega 11
AMD, July 2019
1.97 TFlops
GeForce GTX 1050 Ti Max Q
NVIDIA, January 2018
1.905 TFlops
Radeon Pro 460
AMD, October 2016
1.857 TFlops
Blender
Arc A580
Intel, October 2023
1661
A2
NVIDIA, November 2021
883.68
Radeon RX 580 2048SP
AMD, October 2018
450
GeForce GTX 960
NVIDIA, January 2015
207
Radeon RX Vega 11
AMD, July 2019
92
Hashcat
GeForce GTX 950
NVIDIA, August 2015
84170 H/s
Radeon HD 6870
AMD, October 2010
75215 H/s
Radeon RX Vega 11
AMD, July 2019
71266 H/s
Radeon RX 460
AMD, August 2016
66609 H/s
GeForce GTX 750 Ti
NVIDIA, February 2014
65496 H/s