Top 500

NVIDIA GeForce GTX 1060 Mobile

NVIDIA GeForce GTX 1060 Mobile

NVIDIA GeForce GTX 1060 Mobile is a Mobile video accelerator from NVIDIA. It began to be released in August 2016. The GPU has a boost frequency of 1670MHz. It also has a memory frequency of 2002MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Mobile GPU: 114

Basic

Label Name
NVIDIA
Platform
Mobile
Launch Date
August 2016
Model Name
GeForce GTX 1060 Mobile
Generation
GeForce 10 Mobile
Base Clock
1404MHz
Boost Clock
1670MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1280
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
10
Transistors
4,400 million
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
80
L1 Cache
48 KB (per SM)
L2 Cache
1536KB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
16 nm
Architecture
Pascal
TDP
80W

Memory Specifications

Memory Size
6GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
192bit
Memory Clock
2002MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
192.2 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
80.16 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
133.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
66.80 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
133.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
4.189 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
48
Shader Model
6.4

FP32 (float)

4.189 TFlops

3DMark Time Spy

3723

Compared to Other GPU

0%
20%
59%
Better then 0% GPU over the past year
Better then 20% GPU over the past 3 years
Better then 59% GPU

SiliconCat Rating

114
Ranks 114 among Mobile GPU on our website
534
Ranks 534 among all GPU on our website
FP32 (float)
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
4.373 TFlops
GeForce GTX 1060 6 GB
NVIDIA, July 2016
4.286 TFlops
GeForce GTX 1060 Mobile
NVIDIA, August 2016
4.189 TFlops
Arc A380M
Intel, January 2023
4.095 TFlops
Tesla K20Xm
NVIDIA, November 2012
4.014 TFlops
3DMark Time Spy
6798
RTX A1000 Mobile 6 GB
NVIDIA, March 2022
4844
GeForce GTX 1060 Mobile
NVIDIA, August 2016
3723
GeForce GTX 1050 Ti
NVIDIA, October 2016
2290
Radeon R7 260X
AMD, October 2013
1476