Top 500

NVIDIA GeForce GTX 1060 6 GB GDDR5X

NVIDIA GeForce GTX 1060 6 GB GDDR5X

NVIDIA GeForce GTX 1060 6 GB GDDR5X is a Desktop video accelerator from NVIDIA. It began to be released in October 2018. The GPU has a boost frequency of 1709MHz. It also has a memory frequency of 1001MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 241

Basic

Label Name
NVIDIA
Platform
Desktop
Launch Date
October 2018
Model Name
GeForce GTX 1060 6 GB GDDR5X
Generation
GeForce 10
Base Clock
1506MHz
Boost Clock
1709MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1280
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
10
Transistors
7,200 million
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
80
L1 Cache
48 KB (per SM)
L2 Cache
1536KB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
16 nm
Architecture
Pascal
TDP
120W

Memory Specifications

Memory Size
6GB
Memory Type
GDDR5X
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
192bit
Memory Clock
1001MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
192.2 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
82.03 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
136.7 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
68.36 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
136.7 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
4.373 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Power Connectors
1x 6-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
48
Shader Model
6.4
Suggested PSU
300W

Shadow of the Tomb Raider 2160p

9 Fps

Shadow of the Tomb Raider 1440p

33 Fps

Shadow of the Tomb Raider 1080p

50 Fps

Battlefield 5 2160p

27 Fps

Battlefield 5 1440p

51 Fps

Battlefield 5 1080p

75 Fps

FP32 (float)

4.373 TFlops

Blender

377

OctaneBench

71

Compared to Other GPU

0%
9%
50%
Better then 0% GPU over the past year
Better then 9% GPU over the past 3 years
Better then 50% GPU

SiliconCat Rating

241
Ranks 241 among Desktop GPU on our website
514
Ranks 514 among all GPU on our website
Shadow of the Tomb Raider 2160p
GeForce RTX 2080 SUPER
NVIDIA, July 2019
47 Fps
Radeon RX 6600 XT
AMD, July 2021
39 Fps
RTX A2000
NVIDIA, August 2021
26 Fps
GeForce GTX 970
NVIDIA, September 2014
15 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
9 Fps
Shadow of the Tomb Raider 1440p
GeForce RTX 4060 Mobile
NVIDIA, January 2023
96 Fps
Radeon RX 6600 XT
AMD, July 2021
75 Fps
RTX A2000 12 GB
NVIDIA, November 2021
54 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
33 Fps
GeForce GT 1030 DDR4
NVIDIA, March 2018
7 Fps
Shadow of the Tomb Raider 1080p
GeForce RTX 3070
NVIDIA, September 2020
139 Fps
Arc A770
Intel, October 2022
109 Fps
GeForce GTX 1070
NVIDIA, June 2016
79 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
50 Fps
GeForce GT 1030 DDR4
NVIDIA, March 2018
12 Fps
Battlefield 5 2160p
Radeon RX 5700 XT
AMD, July 2019
58 Fps
Radeon RX 5600 XT
AMD, January 2020
46 Fps
Radeon RX 5500 XT
AMD, December 2019
34 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
27 Fps
GeForce GT 1030 DDR4
NVIDIA, March 2018
1 Fps
Battlefield 5 1440p
Radeon RX 6600
AMD, October 2021
102 Fps
Radeon RX Vega 56
AMD, August 2017
89 Fps
GeForce RTX 3050 OEM
NVIDIA, January 2022
68 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
51 Fps
Radeon RX 550
AMD, April 2017
14 Fps
Battlefield 5 1080p
Radeon RX 5700 XT
AMD, July 2019
139 Fps
GeForce RTX 2060 SUPER
NVIDIA, July 2019
124 Fps
Radeon RX 5500 XT
AMD, December 2019
88 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
75 Fps
Radeon RX 550
AMD, April 2017
20 Fps
FP32 (float)
4.745 TFlops
Radeon Pro 575X
AMD, March 2019
4.578 TFlops
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
4.373 TFlops
GeForce GTX 1060 6 GB
NVIDIA, July 2016
4.286 TFlops
GeForce GTX 1060 Mobile
NVIDIA, August 2016
4.189 TFlops
Blender
Radeon RX 6950 XT
AMD, May 2022
2864
Radeon RX 7600M
AMD, January 2023
1338
GeForce GTX 1070 GDDR5X
NVIDIA, December 2018
561
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
377
Radeon Vega 8
AMD, January 2021
62
OctaneBench
GeForce RTX 3060 Mobile
NVIDIA, January 2021
279
GeForce GTX TITAN X
NVIDIA, March 2015
125
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
71
GeForce GTX 1050 Mobile 3 GB
NVIDIA, February 2019
36
GeForce GTX 650 Ti
NVIDIA, October 2012
16