Intel Pentium B970

Intel Pentium B970

Intel Pentium B970 is a Mobile processor from Intel. It began to be released in January 2012. The CPU belongs to the Sandy Bridge family. The processor has 2 cores and 2 threads. And the processor is also made using 32 nm technology. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Laptop/Mobile CPU: 620

Basic

Label Name
Intel
Platform
Mobile
Launch Date
January 2012
Model Name
?
The Intel processor number is just one of several factors - along with processor brand, system configurations, and system-level benchmarks - to be considered when choosing the right processor for your computing needs.
B970
Code Name
Sandy Bridge

CPU Specifications

Total Cores
?
Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).
2
Total Threads
?
Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.
2
Intel Turbo Boost Technology
?
Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.
No
Intel Hyper-Threading Technology
?
Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.
No
CPU Socket
?
The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.
FCPGA988
Technology
?
Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.
32 nm
Max. Operating Temperature
?
Junction Temperature is the maximum temperature allowed at the processor die.
85C
PCI Express Version
?
PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.
2.0
Instruction Set
?
The instruction set is a hard program stored inside the CPU that guides and optimizes CPU operations. With these instruction sets, the CPU can run more efficiently. There are many manufacturers that design CPUs, which results in different instruction sets, such as the 8086 instruction set for the Intel camp and the RISC instruction set for the ARM camp. x86, ARM v8, and MIPS are all codes for instruction sets. Instruction sets can be extended; for example, x86 added 64-bit support to create x86-64. Manufacturers developing CPUs that are compatible with a certain instruction set need authorization from the instruction set patent holder. A typical example is Intel authorizing AMD, enabling the latter to develop CPUs compatible with the x86 instruction set.
64-bit
Intel 64
?
Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.
Yes
PCI Express Configurations
?
PCI Express (PCIe) Configurations describe the available PCIe lane configurations that can be used to link to PCIe devices.
1x16 | 2x8 | 1x8 2x4
Max Number of PCI Express Lanes
?
A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.
16

Memory Specifications

Memory Type
?
Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.
DDR3 1066/1333
Max Memory Size
?
Max memory size refers to the maximum memory capacity supported by the processor.
16 GB
Memory Channels
?
The number of memory channels refers to the bandwidth operation for real world application.
2
Max Memory Bandwidth
?
Max Memory bandwidth is the maximum rate at which data can be read from or stored into a semiconductor memory by the processor (in GB/s).
21.3 GB/s
ECC Memory Supported
?
ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.
No

GPU Specifications

GPU Name
Intel® HD Graphics for 2nd Generation Intel® Processors
Graphics Base Frequency
?
Graphics Base frequency refers to the rated/guaranteed graphics render clock frequency in MHz.
650 MHz
Graphics Frequency
?
Graphics max dynamic frequency refers to the maximum opportunistic graphics render clock frequency (in MHz) that can be supported using Intel® HD Graphics with Dynamic Frequency feature.
1.15 GHz
Number of Displays Supported
2
Graphics Output
?
Graphics Output defines the interfaces available to communicate with display devices.
eDP/DP/HDMI/SDVO/CRT

Miscellaneous

Intel Virtualization Technology for Directed I/O (VT-d)
?
Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.
No
Intel Virtualization Technology (VT-x)
?
Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.
No
Instruction Set Extensions
Intel® SSE4.1 | Intel® SSE4.2
Enhanced Intel SpeedStep Technology
?
Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.
Yes
Execute Disable Bit
?
Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.
Yes
Intel AES New Instructions
?
Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.
No
Intel Clear Video HD Technology
?
Intel® Clear Video HD Technology, like its predecessor, Intel® Clear Video Technology, is a suite of image decode and processing technologies built into the integrated processor graphics that improve video playback, delivering cleaner, sharper images, more natural, accurate, and vivid colors, and a clear and stable video picture. Intel® Clear Video HD Technology adds video quality enhancements for richer color and more realistic skin tones.
No
Intel VT-x with Extended Page Tables (EPT)
?
Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.
No
Intel InTru 3D Technology
No
Intel Flex Memory Access
Yes
Intel Quick Sync Video
?
Intel Quick Sync Video is a hardware video acceleration technology built into Intel GPUs from Sandy Bridge processors onwards. It allows you to quickly and efficiently perform video-related tasks such as encoding, decoding and converting.
No

Passmark CPU

Single Core
1029
Multi Core
1082

Performance

Integer Math
Multi Core
4.6 GOps/Sec
Floating Point Math
Multi Core
2.4 GOps/Sec
Find Prime Numbers
Multi Core
9 M Primes/Sec
Random String Sorting
Multi Core
2.9 M Strings/Sec
Data Encryption
Multi Core
0.2 GB/Sec
Data Compression
Multi Core
21.2 MB/Sec
Physics
Multi Core
148 Frames/Sec
Extended Instructions
Multi Core
0.7 B Matrices/Sec
Single Thread
Multi Core
1 GOps/Sec
Show more

Geekbench 6

Single Core
372
Multi Core
581

Geekbench 5

Single Core
417
Multi Core
768

Compared to Other CPU

0%
0%
14%
Better then 0% CPU over the past year
Better then 0% CPU over the past 3 years
Better then 14% CPU

SiliconCat Rating

620
Ranks 620 among Laptop/Mobile CPU on our website
2073
Ranks 2073 among all CPU on our website
Geekbench 6 Single Core
Pentium G640
Intel, April 2012
439
Xeon E5-4610 v4
Intel, April 2016
410
Pentium B970
Intel, January 2012
372
A8-3850
AMD, June 2011
335
Celeron B820
Intel, July 2012
284
Geekbench 6 Multi Core
Core i5-3317U
Intel, April 2012
820
Celeron G1610T
Intel, January 2013
685
Pentium B970
Intel, January 2012
581
Celeron 1017U
Intel, July 2013
475
Celeron N2806
Intel, December 2013
259
Geekbench 5 Single Core
A6-6400K
AMD, June 2013
459
Xeon Platinum 8260L
Intel, April 2019
438
Pentium B970
Intel, January 2012
417
Celeron 3965Y
Intel, April 2017
393
Pentium B950
Intel, April 2011
362
Geekbench 5 Multi Core
Celeron G1820T
Intel, December 2013
915
Celeron 3867U
Intel, January 2019
841
Pentium B970
Intel, January 2012
768
Pentium A1018
Intel, July 2013
671
Celeron B810
Intel, January 2011
568
Passmark CPU Single Core
Opteron 6378
AMD, November 2012
1127
Xeon E5620
Intel, March 2010
1087
Pentium B970
Intel, January 2012
1029
Pentium 2127U
Intel, July 2013
969
A4-3330MX
AMD, December 2011
908
Passmark CPU Multi Core
Pentium G640
Intel, April 2012
1355
Core i3-2328M
Intel, July 2012
1235
Pentium B970
Intel, January 2012
1082
Pentium B940
Intel, April 2011
863
Celeron N3060
Intel, January 2016
661