AMD Radeon 890M

AMD Radeon 890M

AMD Radeon 890M is a Integrated video accelerator from AMD. It began to be released in July 2024. The GPU has a boost frequency of 2900 MHz. It also has a memory frequency of System Shared. Its characteristics, as well as benchmark results, are presented in more detail below.

New this year

Basic

Label Name
AMD
Platform
Integrated
Launch Date
July 2024
Model Name
Radeon 890M
Generation
Navi III IGP
Base Clock
400 MHz
Boost Clock
2900 MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1024
Transistors
25.39 billion
RT Cores
16
Compute Units
16
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
64
L1 Cache
128 KB per Array
L2 Cache
2 MB
Bus Interface
PCIe 4.0 x8
Foundry
TSMC
Process Size
4 nm
Architecture
RDNA 3.0
TDP
15W

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
System Shared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
92.80 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
185.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
23.76 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
742.4 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
11.761 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 Ultimate (12_2)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.7

FP32 (float)

11.761 TFlops

Blender

346

OpenCL

42932

Compared to Other GPU

SiliconCat Rating

265
Ranks 265 among all GPU on our website
FP32 (float)
Radeon Instinct MI25
AMD, June 2017
12.535 TFlops
Radeon RX 6800M
AMD, May 2021
12.236 TFlops
Radeon 890M
AMD, July 2024
11.761 TFlops
TITAN X Pascal
NVIDIA, August 2016
11.188 TFlops
Radeon RX 6650 XT
AMD, May 2022
10.787 TFlops
Blender
Radeon RX 6950 XT
AMD, May 2022
2864
Radeon RX 7600M
AMD, January 2023
1338
GeForce GTX 1070 GDDR5X
NVIDIA, December 2018
561
Radeon 890M
AMD, July 2024
346
Radeon Vega 8
AMD, January 2021
62
OpenCL
GeForce RTX 2060 SUPER
NVIDIA, July 2019
90580
P102 100
NVIDIA, February 2018
65116
Radeon 890M
AMD, July 2024
42932
GeForce GTX 780 Ti
NVIDIA, November 2013
26013
FirePro M6100
AMD, October 2013
13395

Related GPU Comparisons