Top 500

NVIDIA CMP 40HX

NVIDIA CMP 40HX

NVIDIA CMP 40HX is a Desktop video accelerator from NVIDIA. It began to be released in February 2021. The GPU has a boost frequency of 1650MHz. It also has a memory frequency of 1750MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 181

Basic

Label Name
NVIDIA
Platform
Desktop
Launch Date
February 2021
Model Name
CMP 40HX
Generation
Mining GPUs
Base Clock
1470MHz
Boost Clock
1650MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2304
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
36
Transistors
10,800 million
RT Cores
36
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
288
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
144
L1 Cache
64 KB (per SM)
L2 Cache
4MB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
12 nm
Architecture
Turing
TDP
185W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
448.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
105.6 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
237.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
15.21 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
237.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
7.302 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Power Connectors
1x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.6
Suggested PSU
450W

FP32 (float)

7.302 TFlops

Blender

1294

Vulkan

60353

OpenCL

97694

Compared to Other GPU

8%
13%
62%
Better then 8% GPU over the past year
Better then 13% GPU over the past 3 years
Better then 62% GPU

SiliconCat Rating

181
Ranks 181 among Desktop GPU on our website
371
Ranks 371 among all GPU on our website
FP32 (float)
GeForce RTX 3050 OEM
NVIDIA, January 2022
8.084 TFlops
Radeon Pro 5700 XT
AMD, August 2020
7.52 TFlops
CMP 40HX
NVIDIA, February 2021
7.302 TFlops
Radeon R9 FURY
AMD, July 2015
6.885 TFlops
GeForce GTX 1070 GDDR5X
NVIDIA, December 2018
6.591 TFlops
Blender
GeForce RTX 4070 Ti SUPER
NVIDIA, January 2024
7021
Radeon RX 6900 XT
AMD, October 2020
2669
CMP 40HX
NVIDIA, February 2021
1294
Quadro P5000 Mobile
NVIDIA, January 2017
536
Radeon 780M
AMD, January 2023
243
Vulkan
Radeon RX 7900 GRE
AMD, July 2023
141871
Radeon RX 7600
AMD, May 2023
91662
CMP 40HX
NVIDIA, February 2021
60353
Radeon Pro 5500M
AMD, November 2019
34633
GeForce GTX 660 Ti
NVIDIA, August 2012
15778
OpenCL
L40S
NVIDIA, October 2022
362331
Radeon PRO W7800
AMD, April 2023
147444
CMP 40HX
NVIDIA, February 2021
97694
Radeon RX 6600S
AMD, January 2022
66774
Radeon RX 6550M
AMD, January 2023
46389