Top 100

NVIDIA RTX 4000 Ada Generation

NVIDIA RTX 4000 Ada Generation

NVIDIA RTX 4000 Ada Generation is a Desktop video accelerator from NVIDIA. It began to be released in August 2023. The GPU has a boost frequency of 2175MHz. It also has a memory frequency of 1750MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 52

Basic

Label Name
NVIDIA
Platform
Desktop
Launch Date
August 2023
Model Name
RTX 4000 Ada Generation
Generation
Quadro Ada
Base Clock
1500MHz
Boost Clock
2175MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
6144
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
48
Transistors
35,800 million
RT Cores
48
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
192
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
192
L1 Cache
128 KB (per SM)
L2 Cache
48MB
Bus Interface
PCIe 4.0 x16
Foundry
TSMC
Process Size
5 nm
Architecture
Ada Lovelace
TDP
130W

Memory Specifications

Memory Size
20GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
160bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
280.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
174.0 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
417.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
26.73 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
417.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
27.813 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.9
Power Connectors
1x 16-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
80
Shader Model
6.7
Suggested PSU
300W

FP32 (float)

27.813 TFlops

Blender

5293

OpenCL

149948

Compared to Other GPU

41%
59%
89%
Better then 41% GPU over the past year
Better then 59% GPU over the past 3 years
Better then 89% GPU

SiliconCat Rating

52
Ranks 52 among Desktop GPU on our website
92
Ranks 92 among all GPU on our website
FP32 (float)
Radeon RX 7800M
AMD, September 2024
35.511 TFlops
Radeon PRO W7700
AMD, November 2023
31.308 TFlops
RTX 4000 Ada Generation
NVIDIA, August 2023
27.813 TFlops
RTX A4500
NVIDIA, November 2021
23.175 TFlops
Instinct MI100
AMD, November 2020
22.159 TFlops
Blender
GeForce RTX 4090
NVIDIA, September 2022
12577
RTX 4000 Ada Generation
NVIDIA, August 2023
5293
Radeon RX 6800M
AMD, May 2021
1424
Tesla M40 24 GB
NVIDIA, November 2015
589
Tesla K80
NVIDIA, November 2014
258
OpenCL
L40S
NVIDIA, October 2022
362331
RTX 4000 Ada Generation
NVIDIA, August 2023
149948
Arc A770M
Intel, January 2022
94927
Radeon RX 5700
AMD, July 2019
66428
GeForce GTX 1070
NVIDIA, June 2016
46137