Top 500

NVIDIA RTX A1000

NVIDIA RTX A1000
NVIDIA RTX A1000 is a Desktop video accelerator from NVIDIA. It began to be released in April 2024. The GPU has a boost frequency of 1462MHz. It also has a memory frequency of 1500MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
New this year
Top Desktop GPU: 195

Basic

Label Name
NVIDIA
Platform
Desktop
Launch Date
April 2024
Model Name
RTX A1000
Generation
Quadro Ampere
Base Clock
727MHz
Boost Clock
1462MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2304
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
18
Transistors
8,700 million
RT Cores
18
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
72
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
72
L1 Cache
128 KB (per SM)
L2 Cache
2MB
Bus Interface
PCIe 4.0 x8
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere
TDP
50W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
192.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
46.78 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
105.3 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
6.737 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
105.3 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
6.804 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.7
Suggested PSU
250W

FP32 (float)

6.804 TFlops

Blender

1305.5

Vulkan

49526

OpenCL

53439

Compared to Other GPU

0%
6%
60%
Better then 0% GPU over the past year
Better then 6% GPU over the past 3 years
Better then 60% GPU

SiliconCat Rating

195
Ranks 195 among Desktop GPU on our website
393
Ranks 393 among all GPU on our website
FP32 (float)
Radeon RX 6600S
AMD, January 2022
7.458 TFlops
RTX A4 Mobile
NVIDIA, April 2021
7.248 TFlops
RTX A1000
NVIDIA, April 2024
6.804 TFlops
6.571 TFlops
GeForce RTX 2060
NVIDIA, January 2019
6.321 TFlops
Blender
Radeon RX 7900 XTX
AMD, November 2022
4054
Radeon RX 7700 XT
AMD, August 2023
2323
RTX A1000
NVIDIA, April 2024
1305.5
Radeon RX 5600 XT
AMD, January 2020
630
GeForce GTX 980
NVIDIA, September 2014
343.23
Vulkan
GeForce RTX 2080 SUPER
NVIDIA, July 2019
106450
Radeon RX 7600M XT
AMD, January 2023
79178
RTX A1000
NVIDIA, April 2024
49526
GeForce GTX 980M
NVIDIA, October 2014
26002
GeForce GTX 650 Ti Boost
NVIDIA, March 2013
9973
OpenCL
GeForce RTX 2070 SUPER
NVIDIA, July 2019
103572
RTX A2000
NVIDIA, August 2021
72786
RTX A1000
NVIDIA, April 2024
53439
Quadro P2200
NVIDIA, June 2019
32972
GeForce GTX 680
NVIDIA, March 2012
16523