Top 500

AMD FirePro W7100

AMD FirePro W7100
AMD FirePro W7100 is a Desktop video accelerator from AMD. It began to be released in August 2014. It also has a memory frequency of 1250MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
Top Desktop GPU: 307

Basic

Label Name
AMD
Platform
Desktop
Launch Date
August 2014
Model Name
FirePro W7100
Generation
FirePro
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
Transistors
5,000 million
Compute Units
28
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
112
L1 Cache
16 KB (per CU)
L2 Cache
512KB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
28 nm
Architecture
GCN 3.0
TDP
150W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1250MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
160.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
29.44 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
103.0 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
3.297 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
206.1 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
3.167 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.0
OpenGL
4.6
DirectX
12 (12_0)
Power Connectors
1x 6-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.3
Suggested PSU
450W

FP32 (float)

3.167 TFlops

Vulkan

27256

OpenCL

25000

Compared to Other GPU

0%
2%
37%
Better then 0% GPU over the past year
Better then 2% GPU over the past 3 years
Better then 37% GPU

SiliconCat Rating

307
Ranks 307 among Desktop GPU on our website
638
Ranks 638 among all GPU on our website
FP32 (float)
Jetson AGX Orin 32 GB
NVIDIA, February 2023
3.332 TFlops
GeForce GTX 770
NVIDIA, May 2013
3.266 TFlops
FirePro W7100
AMD, August 2014
3.167 TFlops
GeForce GTX 1650
NVIDIA, April 2019
3.044 TFlops
Radeon R9 M395X
AMD, May 2015
2.96 TFlops
Vulkan
Radeon RX 6700S
AMD, January 2022
69708
Radeon RX 580 2048SP
AMD, October 2018
40716
FirePro W7100
AMD, August 2014
27256
GeForce 940M
NVIDIA, March 2015
5522
OpenCL
Radeon RX 5600 OEM
AMD, January 2020
64365
Radeon Pro 5500 XT
AMD, August 2020
42238
FirePro W7100
AMD, August 2014
25000
Quadro P620
NVIDIA, February 2018
12475
Radeon HD 6950
AMD, December 2010
6192