Top 500

AMD Radeon Pro 5500 XT

AMD Radeon Pro 5500 XT

AMD Radeon Pro 5500 XT is a Desktop video accelerator from AMD. It began to be released in August 2020. The GPU has a boost frequency of 1757MHz. It also has a memory frequency of 1750MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 214

Basic

Label Name
AMD
Platform
Desktop
Launch Date
August 2020
Model Name
Radeon Pro 5500 XT
Generation
Radeon Pro Mac
Base Clock
1187MHz
Boost Clock
1757MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1536
Transistors
6,400 million
Compute Units
24
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
96
L2 Cache
2MB
Bus Interface
PCIe 4.0 x8
Foundry
TSMC
Process Size
7 nm
Architecture
RDNA 1.0
TDP
125W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
56.22 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
168.7 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
10.80 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
337.3 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
5.396 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.5
Suggested PSU
300W

FP32 (float)

5.396 TFlops

Blender

82

Vulkan

39646

OpenCL

42238

Compared to Other GPU

0%
11%
55%
Better then 0% GPU over the past year
Better then 11% GPU over the past 3 years
Better then 55% GPU

SiliconCat Rating

214
Ranks 214 among Desktop GPU on our website
441
Ranks 441 among all GPU on our website
FP32 (float)
Radeon R9 290X
AMD, October 2013
5.63 TFlops
5.501 TFlops
Radeon Pro 5500 XT
AMD, August 2020
5.396 TFlops
Radeon R9 390 X2
AMD, September 2015
5.221 TFlops
Radeon RX 5300 XT
AMD, October 2019
5.091 TFlops
Blender
Radeon RX 6950 XT
AMD, May 2022
2864
Radeon RX 7600M
AMD, January 2023
1338
GeForce GTX 1070 GDDR5X
NVIDIA, December 2018
561
GeForce GTX 980MX
NVIDIA, June 2016
251
Radeon Pro 5500 XT
AMD, August 2020
82
Vulkan
Radeon PRO W7900
AMD, April 2023
99529
Radeon RX 5700 XT
AMD, July 2019
71147
Radeon RX 580 2048SP
AMD, October 2018
40716
Radeon Pro 5500 XT
AMD, August 2020
39646
GeForce 940M
NVIDIA, March 2015
5522
OpenCL
Radeon RX 6700
AMD, June 2021
89509
Radeon RX 5600 OEM
AMD, January 2020
64365
Radeon Pro 5500 XT
AMD, August 2020
42238
FirePro W7100
AMD, August 2014
25000
Quadro P620
NVIDIA, February 2018
12475