AMD Radeon Vega 8

AMD Radeon Vega 8
AMD Radeon Vega 8 is a Integrated video accelerator from AMD. It began to be released in January 2021. The GPU has a boost frequency of 2000MHz. It also has a memory frequency of SystemShared. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
AMD
Platform
Integrated
Launch Date
January 2021
Model Name
Radeon Vega 8
Generation
Cezanne
Base Clock
300MHz
Boost Clock
2000MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
512
Transistors
9,800 million
Compute Units
8
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
32
Bus Interface
IGP
Foundry
TSMC
Process Size
7 nm
Architecture
GCN 5.1
TDP
45W

Memory Specifications

Memory Size
System Shared
Memory Type
System Shared
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
System Shared
Memory Clock
SystemShared
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
System Dependent

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
16.00 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
64.00 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
4.096 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
128.0 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
2.047 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
8
Shader Model
6.4

FP32 (float)

2.047 TFlops

3DMark Time Spy

2742

Blender

62

Hashcat

43657 H/s

Compared to Other GPU

SiliconCat Rating

785
Ranks 785 among all GPU on our website
FP32 (float)
Radeon E9260 PCIe
AMD, September 2016
2.193 TFlops
Radeon HD 7970M
AMD, April 2012
2.132 TFlops
Radeon Vega 8
AMD, January 2021
2.047 TFlops
Radeon HD 6870
AMD, October 2010
2.016 TFlops
Radeon R9 M470X
AMD, May 2016
1.971 TFlops
3DMark Time Spy
Arc A550M
Intel, January 2022
5182
Radeon RX 570
AMD, April 2017
3874
Radeon 780M
AMD, January 2023
2755
Radeon Vega 8
AMD, January 2021
2742
GeForce GT 1030 DDR4
NVIDIA, March 2018
635
Blender
Arc A580
Intel, October 2023
1661
A2
NVIDIA, November 2021
883.68
Radeon RX 580 2048SP
AMD, October 2018
450
GeForce GTX 960
NVIDIA, January 2015
207
Radeon Vega 8
AMD, January 2021
62
Hashcat
GeForce GTX 780M
NVIDIA, May 2013
45589 H/s
GeForce GTX 580
NVIDIA, November 2010
44442 H/s
Radeon Vega 8
AMD, January 2021
43657 H/s
GeForce GTX 760
NVIDIA, June 2013
41825 H/s
Radeon RX 550
AMD, April 2017
40676 H/s

Related GPU Comparisons