Top 500

NVIDIA A2

NVIDIA A2
NVIDIA A2 is a Desktop video accelerator from NVIDIA. It began to be released in November 2021. The GPU has a boost frequency of 1770MHz. It also has a memory frequency of 1563MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
Top Desktop GPU: 248

Basic

Label Name
NVIDIA
Platform
Desktop
Launch Date
November 2021
Model Name
A2
Generation
Quadro
Base Clock
1440MHz
Boost Clock
1770MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1280
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
10
Transistors
Unknown
RT Cores
10
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
40
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
40
L1 Cache
128 KB (per SM)
L2 Cache
2MB
Bus Interface
PCIe 4.0 x8
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere
TDP
60W

Memory Specifications

Memory Size
16GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
Memory Clock
1563MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
200.1 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
56.64 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
70.80 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
4.531 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
70.80 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
4.715 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
Shader Model
6.6
Suggested PSU
250W

FP32 (float)

4.715 TFlops

Blender

883.68

Vulkan

34563

OpenCL

35144

Compared to Other GPU

0%
5%
49%
Better then 0% GPU over the past year
Better then 5% GPU over the past 3 years
Better then 49% GPU

SiliconCat Rating

248
Ranks 248 among Desktop GPU on our website
516
Ranks 516 among all GPU on our website
FP32 (float)
Tesla K40d
NVIDIA, November 2013
4.944 TFlops
GRID M60 8Q
NVIDIA, August 2015
4.824 TFlops
A2
NVIDIA, November 2021
4.715 TFlops
Radeon RX 470D
AMD, October 2016
4.497 TFlops
GeForce GTX 1650 SUPER
NVIDIA, November 2019
4.328 TFlops
Blender
RTX A5000
NVIDIA, April 2021
2981
Arc A580
Intel, October 2023
1661
A2
NVIDIA, November 2021
883.68
Radeon RX 580 2048SP
AMD, October 2018
450
GeForce GTX 960
NVIDIA, January 2015
207
Vulkan
Radeon RX 6700S
AMD, January 2022
69708
Radeon RX 580 2048SP
AMD, October 2018
40716
A2
NVIDIA, November 2021
34563
GeForce 940M
NVIDIA, March 2015
5522
OpenCL
Radeon RX 6700M
AMD, May 2021
77001
GeForce GTX 1660
NVIDIA, March 2019
59526
A2
NVIDIA, November 2021
35144
GeForce GTX 970M
NVIDIA, October 2014
18130
GeForce GTX 950A
NVIDIA, March 2015
10348