Top 100

NVIDIA GeForce GTX 1070 Mobile

NVIDIA GeForce GTX 1070 Mobile

NVIDIA GeForce GTX 1070 Mobile is a Mobile video accelerator from NVIDIA. It began to be released in August 2016. The GPU has a boost frequency of 1645MHz. It also has a memory frequency of 2002MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Mobile GPU: 70

Basic

Label Name
NVIDIA
Platform
Mobile
Launch Date
August 2016
Model Name
GeForce GTX 1070 Mobile
Generation
GeForce 10 Mobile
Base Clock
1442MHz
Boost Clock
1645MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2048
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
16
Transistors
7,200 million
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
128
L1 Cache
48 KB (per SM)
L2 Cache
2MB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
16 nm
Architecture
Pascal
TDP
120W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR5
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
2002MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
256.3 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
105.3 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
210.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
105.3 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
210.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
6.872 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 (12_1)
CUDA
6.1
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.4

FP32 (float)

6.872 TFlops

3DMark Time Spy

5764

Compared to Other GPU

13%
36%
75%
Better then 13% GPU over the past year
Better then 36% GPU over the past 3 years
Better then 75% GPU

SiliconCat Rating

70
Ranks 70 among Mobile GPU on our website
381
Ranks 381 among all GPU on our website
FP32 (float)
Radeon Pro Vega 48
AMD, March 2019
7.519 TFlops
Quadro RTX 4000
NVIDIA, November 2018
7.261 TFlops
GeForce GTX 1070 Mobile
NVIDIA, August 2016
6.872 TFlops
GeForce RTX 2060 TU104
NVIDIA, January 2020
6.579 TFlops
Radeon RX 590 GME
AMD, March 2020
6.357 TFlops
3DMark Time Spy
GeForce RTX 2080 Mobile
NVIDIA, January 2019
9717
Radeon RX Vega 64
AMD, August 2017
7689
GeForce GTX 1070 Mobile
NVIDIA, August 2016
5764
Radeon RX 6500M
AMD, January 2022
4147
GeForce GTX 780
NVIDIA, May 2013
2904