NVIDIA Quadro RTX 4000

NVIDIA Quadro RTX 4000

NVIDIA Quadro RTX 4000 is a Professional video accelerator from NVIDIA. It began to be released in November 2018. The GPU has a boost frequency of 1545MHz. It also has a memory frequency of 1625MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
NVIDIA
Platform
Professional
Launch Date
November 2018
Model Name
Quadro RTX 4000
Generation
Quadro
Base Clock
1005MHz
Boost Clock
1545MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2304
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
36
Transistors
13,600 million
RT Cores
36
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
288
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
144
L1 Cache
64 KB (per SM)
L2 Cache
4MB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
12 nm
Architecture
Turing
TDP
160W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1625MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
416.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
98.88 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
222.5 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
14.24 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
222.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
7.261 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Power Connectors
1x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.6
Suggested PSU
450W

FP32 (float)

7.261 TFlops

3DMark Time Spy

8013

Vulkan

66795

OpenCL

85184

Compared to Other GPU

SiliconCat Rating

371
Ranks 371 among all GPU on our website
FP32 (float)
Radeon RX 5700M
AMD, March 2020
8.084 TFlops
Radeon Pro Vega 48
AMD, March 2019
7.519 TFlops
Quadro RTX 4000
NVIDIA, November 2018
7.261 TFlops
GeForce GTX 1070 Mobile
NVIDIA, August 2016
6.872 TFlops
GeForce RTX 2060 TU104
NVIDIA, January 2020
6.579 TFlops
3DMark Time Spy
13139
RTX 6000 Ada
NVIDIA, December 2022
10122
Quadro RTX 4000
NVIDIA, November 2018
8013
RTX A2000
NVIDIA, August 2021
5805
Radeon RX 590 GME
AMD, March 2020
4346
Vulkan
Radeon RX 6800 XT
AMD, October 2020
156538
Radeon RX 6800M
AMD, May 2021
97530
Quadro RTX 4000
NVIDIA, November 2018
66795
Radeon Pro 5500 XT
AMD, August 2020
39646
GeForce GTX 680
NVIDIA, March 2012
17987
OpenCL
RTX 4500 Ada Generation
NVIDIA, August 2023
207543
GeForce RTX 3070
NVIDIA, September 2020
128527
Quadro RTX 4000
NVIDIA, November 2018
85184
TITAN Xp
NVIDIA, April 2017
63099
GeForce GTX 1650
NVIDIA, April 2019
39502