Top 500

AMD Radeon RX Vega 64

AMD Radeon RX Vega 64

AMD Radeon RX Vega 64 is a Desktop video accelerator from AMD. It began to be released in August 2017. The GPU has a boost frequency of 1546MHz. It also has a memory frequency of 945MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 122

Basic

Label Name
AMD
Platform
Desktop
Launch Date
August 2017
Model Name
Radeon RX Vega 64
Generation
Vega
Base Clock
1247MHz
Boost Clock
1546MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
4096
Transistors
12,500 million
Compute Units
64
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
256
L1 Cache
16 KB (per CU)
L2 Cache
4MB
Bus Interface
PCIe 3.0 x16
Foundry
GlobalFoundries
Process Size
14 nm
Architecture
GCN 5.0
TDP
295W

Memory Specifications

Memory Size
8GB
Memory Type
HBM2
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
2048bit
Memory Clock
945MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
483.8 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
98.94 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
395.8 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
25.33 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
791.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
12.406 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.1
OpenGL
4.6
DirectX
12 (12_1)
Power Connectors
2x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.4
Suggested PSU
600W

Shadow of the Tomb Raider 2160p

32 Fps

Shadow of the Tomb Raider 1440p

61 Fps

Shadow of the Tomb Raider 1080p

94 Fps

Battlefield 5 2160p

58 Fps

Battlefield 5 1440p

93 Fps

Battlefield 5 1080p

128 Fps

GTA 5 2160p

55 Fps

GTA 5 1440p

107 Fps

FP32 (float)

12.406 TFlops

3DMark Time Spy

7689

Blender

793

Compared to Other GPU

16%
27%
75%
Better then 16% GPU over the past year
Better then 27% GPU over the past 3 years
Better then 75% GPU

SiliconCat Rating

122
Ranks 122 among Desktop GPU on our website
249
Ranks 249 among all GPU on our website
Shadow of the Tomb Raider 2160p
Radeon RX 6800
AMD, October 2020
66 Fps
GeForce RTX 3070 Ti Mobile
NVIDIA, January 2022
43 Fps
Radeon RX Vega 64
AMD, August 2017
32 Fps
GeForce GTX 1660
NVIDIA, March 2019
24 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
9 Fps
Shadow of the Tomb Raider 1440p
Radeon RX 6750 XT
AMD, March 2022
104 Fps
GeForce RTX 3070 Mobile
NVIDIA, January 2021
78 Fps
Radeon RX Vega 64
AMD, August 2017
61 Fps
GeForce GTX 1650 SUPER
NVIDIA, November 2019
41 Fps
GeForce GTX 1050
NVIDIA, October 2016
18 Fps
Shadow of the Tomb Raider 1080p
GeForce RTX 4060 Ti
NVIDIA, May 2023
164 Fps
Radeon RX 6650 XT
AMD, May 2022
121 Fps
Radeon RX Vega 64
AMD, August 2017
94 Fps
Radeon RX 590
AMD, November 2018
70 Fps
GeForce GTX 1050
NVIDIA, October 2016
32 Fps
Battlefield 5 2160p
GeForce RTX 3080 Ti
NVIDIA, May 2021
114 Fps
GeForce RTX 3060 Ti GDDR6X
NVIDIA, October 2022
73 Fps
Radeon RX Vega 64
AMD, August 2017
58 Fps
GeForce GTX 1660 SUPER
NVIDIA, October 2019
42 Fps
Battlefield 5 1440p
GeForce RTX 3060 Ti GDDR6X
NVIDIA, October 2022
128 Fps
Radeon RX 6600 XT
AMD, July 2021
109 Fps
Radeon RX Vega 64
AMD, August 2017
93 Fps
Radeon RX 590
AMD, November 2018
73 Fps
Radeon RX 570
AMD, April 2017
50 Fps
Battlefield 5 1080p
GeForce RTX 2080 Ti
NVIDIA, September 2018
186 Fps
Radeon RX 6650 XT
AMD, May 2022
160 Fps
Radeon RX Vega 64
AMD, August 2017
128 Fps
Radeon RX 590
AMD, November 2018
103 Fps
GeForce GTX 1060 6 GB GDDR5X
NVIDIA, October 2018
75 Fps
GTA 5 2160p
GeForce RTX 3090 Ti
NVIDIA, January 2022
146 Fps
GeForce RTX 4060
NVIDIA, May 2023
92 Fps
GeForce RTX 3060 Ti GDDR6X
NVIDIA, October 2022
69 Fps
Radeon RX Vega 64
AMD, August 2017
55 Fps
GeForce GTX 1650
NVIDIA, April 2019
27 Fps
GTA 5 1440p
GeForce RTX 3090 Ti
NVIDIA, January 2022
187 Fps
GeForce RTX 2080 SUPER
NVIDIA, July 2019
116 Fps
Radeon RX Vega 64
AMD, August 2017
107 Fps
GeForce RTX 4060 Mobile
NVIDIA, January 2023
74 Fps
GeForce RTX 3050 8 GB
NVIDIA, January 2022
47 Fps
FP32 (float)
GeForce RTX 3060 8 GB GA104
NVIDIA, October 2022
12.994 TFlops
GeForce RTX 3060
NVIDIA, January 2021
12.736 TFlops
Radeon RX Vega 64
AMD, August 2017
12.406 TFlops
CMP 170HX
NVIDIA, September 2021
12.13 TFlops
Tesla P10
NVIDIA, September 2016
11.467 TFlops
3DMark Time Spy
Radeon RX 6750 GRE
AMD, October 2023
12617
GeForce RTX 2080 Mobile
NVIDIA, January 2019
9717
Radeon RX Vega 64
AMD, August 2017
7689
GeForce GTX 1070 Mobile
NVIDIA, August 2016
5764
Radeon RX 6500M
AMD, January 2022
4147
Blender
RTX A4000
NVIDIA, April 2021
3547
Radeon RX 6750 XT
AMD, March 2022
1620
Radeon RX Vega 64
AMD, August 2017
793
Radeon Pro 580X
AMD, March 2019
347
Quadro K2200
NVIDIA, July 2014
119