Top 100

NVIDIA GeForce RTX 2080 SUPER Max Q

NVIDIA GeForce RTX 2080 SUPER Max Q
NVIDIA GeForce RTX 2080 SUPER Max Q is a Mobile video accelerator from NVIDIA. It began to be released in April 2020. The GPU has a boost frequency of 975MHz. It also has a memory frequency of 1375MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
Top Mobile GPU: 80

Basic

Label Name
NVIDIA
Platform
Mobile
Launch Date
April 2020
Model Name
GeForce RTX 2080 SUPER Max Q
Generation
GeForce 20 Mobile
Base Clock
735MHz
Boost Clock
975MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
3072
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
48
Transistors
13,600 million
RT Cores
48
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
384
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
192
L1 Cache
64 KB (per SM)
L2 Cache
4MB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
12 nm
Architecture
Turing
TDP
80W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1375MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
352.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
62.40 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
187.2 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
11.98 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
187.2 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
6.109 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.6

FP32 (float)

6.109 TFlops

3DMark Time Spy

8864

Blender

2085

OctaneBench

202

Compared to Other GPU

0%
32%
72%
Better then 0% GPU over the past year
Better then 32% GPU over the past 3 years
Better then 72% GPU

SiliconCat Rating

80
Ranks 80 among Mobile GPU on our website
420
Ranks 420 among all GPU on our website
FP32 (float)
Quadro P5000 Mobile
NVIDIA, January 2017
6.609 TFlops
GeForce RTX 2080 Max Q
NVIDIA, January 2019
6.445 TFlops
6.109 TFlops
Instinct MI6
AMD, December 2016
5.913 TFlops
Radeon R9 290X
AMD, October 2013
5.63 TFlops
3DMark Time Spy
GeForce RTX 3070 Ti
NVIDIA, May 2021
15161
10721
8864
6742
GeForce RTX 3050 6 GB
NVIDIA, February 2024
4832
Blender
GeForce RTX 4090
NVIDIA, September 2022
12577
GeForce RTX 4060
NVIDIA, May 2023
3410
2085
Radeon RX 6600
AMD, October 2021
1005.46
Radeon Pro Vega 56
AMD, August 2017
521
OctaneBench
GeForce RTX 4090
NVIDIA, September 2022
1341
RTX A4000
NVIDIA, April 2021
350
202
GeForce GTX 780
NVIDIA, May 2013
88
T550 Mobile
NVIDIA, May 2022
47