Top 100

NVIDIA GeForce RTX 2080 Max Q

NVIDIA GeForce RTX 2080 Max Q
NVIDIA GeForce RTX 2080 Max Q is a Mobile video accelerator from NVIDIA. It began to be released in January 2019. The GPU has a boost frequency of 1095MHz. It also has a memory frequency of 1500MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
Top Mobile GPU: 76

Basic

Label Name
NVIDIA
Platform
Mobile
Launch Date
January 2019
Model Name
GeForce RTX 2080 Max Q
Generation
GeForce 20 Mobile
Base Clock
735MHz
Boost Clock
1095MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2944
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
46
Transistors
13,600 million
RT Cores
46
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
368
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
184
L1 Cache
64 KB (per SM)
L2 Cache
4MB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
12 nm
Architecture
Turing
TDP
80W

Memory Specifications

Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
384.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
70.08 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
201.5 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
12.89 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
201.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
6.445 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
7.5
Power Connectors
None
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.6

FP32 (float)

6.445 TFlops

3DMark Time Spy

7809

Blender

1573

OctaneBench

189

Compared to Other GPU

0%
36%
73%
Better then 0% GPU over the past year
Better then 36% GPU over the past 3 years
Better then 73% GPU

SiliconCat Rating

76
Ranks 76 among Mobile GPU on our website
410
Ranks 410 among all GPU on our website
FP32 (float)
GeForce RTX 2060 SUPER
NVIDIA, July 2019
6.897 TFlops
Quadro P5000 Mobile
NVIDIA, January 2017
6.609 TFlops
GeForce RTX 2080 Max Q
NVIDIA, January 2019
6.445 TFlops
6.109 TFlops
Instinct MI6
AMD, December 2016
5.913 TFlops
3DMark Time Spy
RTX A4500
NVIDIA, November 2021
12865
GeForce GTX 1080 Ti
NVIDIA, March 2017
9876
GeForce RTX 2080 Max Q
NVIDIA, January 2019
7809
RTX A2000 12 GB
NVIDIA, November 2021
5780
Radeon R9 390X
AMD, June 2015
4244
Blender
GeForce RTX 4070 SUPER
NVIDIA, January 2024
6094
Radeon RX 6950 XT
AMD, May 2022
2864
GeForce RTX 2080 Max Q
NVIDIA, January 2019
1573
Radeon RX 6500 XT
AMD, January 2022
444
OctaneBench
GeForce RTX 4090
NVIDIA, September 2022
1341
RTX A4000
NVIDIA, April 2021
350
GeForce RTX 2080 Max Q
NVIDIA, January 2019
189
GeForce GTX 780
NVIDIA, May 2013
88
T550 Mobile
NVIDIA, May 2022
47