Better then 52% GPU over the past year
Top 50
NVIDIA GeForce RTX 4070 SUPER
NVIDIA GeForce RTX 4070 SUPER is a Desktop video accelerator from NVIDIA. It began to be released in January 2024. The GPU has a boost frequency of 2610MHz. It also has a memory frequency of 1313MHz. Its characteristics, as well as benchmark results, are presented in more detail below.
1
Likes
Basic
Label Name
NVIDIA
Platform
Desktop
Launch Date
January 2024
Model Name
GeForce RTX 4070 SUPER
Generation
GeForce 40
Base Clock
2310MHz
Boost Clock
2610MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
7168
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
56
L1 Cache
128 KB (per SM)
L2 Cache
48MB
Bus Interface
PCIe 4.0 x16
TDP
285W
Memory Specifications
Memory Size
12GB
Memory Type
GDDR6X
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
192bit
Memory Clock
1313MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
504.2 GB/s
Theoretical Performance
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
208.8 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
584.6 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
37.42 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
584.6 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
37.408
TFlops
Miscellaneous
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
FP32 (float)
37.408
TFlops
3DMark Time Spy
20998
Blender
6094
Vulkan
173796
OpenCL
187894
Compared to Other GPU
52%
70%
92%
Better then 70% GPU over the past 3 years
Better then 92% GPU
SiliconCat Rating
36
Ranks 36 among Desktop GPU on our website
67
Ranks 67 among all GPU on our website
FP32 (float)
3DMark Time Spy
Blender
Vulkan
OpenCL