Top 500

AMD Radeon R9 Nano

AMD Radeon R9 Nano

AMD Radeon R9 Nano is a Desktop video accelerator from AMD. It began to be released in August 2015. It also has a memory frequency of 500MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Top Desktop GPU: 169

Basic

Label Name
AMD
Platform
Desktop
Launch Date
August 2015
Model Name
Radeon R9 Nano
Generation
Pirate Islands
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
4096
Transistors
8,900 million
Compute Units
64
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
256
L1 Cache
16 KB (per CU)
L2 Cache
2MB
Bus Interface
PCIe 3.0 x16
Foundry
TSMC
Process Size
28 nm
Architecture
GCN 3.0
TDP
175W

Memory Specifications

Memory Size
4GB
Memory Type
HBM
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
4096bit
Memory Clock
500MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
512.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
64.00 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
256.0 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
8.192 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
512.0 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
8.189 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.2
OpenCL Version
2.0
OpenGL
4.6
DirectX
12 (12_0)
Power Connectors
1x 8-pin
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
64
Shader Model
6.3
Suggested PSU
450W

Shadow of the Tomb Raider 2160p

29 Fps

Shadow of the Tomb Raider 1440p

59 Fps

Shadow of the Tomb Raider 1080p

75 Fps

FP32 (float)

8.189 TFlops

3DMark Time Spy

4453

Compared to Other GPU

8%
15%
65%
Better then 8% GPU over the past year
Better then 15% GPU over the past 3 years
Better then 65% GPU

SiliconCat Rating

169
Ranks 169 among Desktop GPU on our website
345
Ranks 345 among all GPU on our website
Shadow of the Tomb Raider 2160p
RTX A4000
NVIDIA, April 2021
49 Fps
GeForce GTX 1080 Ti
NVIDIA, March 2017
40 Fps
Radeon R9 Nano
AMD, August 2015
29 Fps
GeForce GTX 1060 5 GB
NVIDIA, December 2017
16 Fps
Radeon RX 560
AMD, April 2017
3 Fps
Shadow of the Tomb Raider 1440p
GeForce RTX 4070 Mobile
NVIDIA, January 2023
98 Fps
TITAN X Pascal
NVIDIA, August 2016
78 Fps
Radeon R9 Nano
AMD, August 2015
59 Fps
Radeon RX 480
AMD, June 2016
36 Fps
Radeon RX 560
AMD, April 2017
12 Fps
Shadow of the Tomb Raider 1080p
GeForce RTX 3070
NVIDIA, September 2020
139 Fps
Arc A770
Intel, October 2022
109 Fps
GeForce GTX 1070
NVIDIA, June 2016
79 Fps
Radeon R9 Nano
AMD, August 2015
75 Fps
GeForce GT 1030 DDR4
NVIDIA, March 2018
12 Fps
FP32 (float)
Radeon RX 6600M
AMD, May 2021
8.831 TFlops
GeForce GTX 1080
NVIDIA, May 2016
8.523 TFlops
Radeon R9 Nano
AMD, August 2015
8.189 TFlops
Quadro RTX 4000 Mobile
NVIDIA, May 2019
7.985 TFlops
Quadro P4200 Mobile
NVIDIA, February 2018
7.437 TFlops
3DMark Time Spy
GeForce RTX 4050 Mobile
NVIDIA, January 2023
8279
GeForce GTX 1660 SUPER
NVIDIA, October 2019
6227
Radeon R9 Nano
AMD, August 2015
4453
GeForce GTX 1060 Max Q
NVIDIA, June 2017
3388
GeForce GTX 1630
NVIDIA, June 2022
2102