NVIDIA RTX A6000

NVIDIA RTX A6000

NVIDIA RTX A6000 is a Professional video accelerator from NVIDIA. It began to be released in October 2020. The GPU has a boost frequency of 1800MHz. It also has a memory frequency of 2000MHz. Its characteristics, as well as benchmark results, are presented in more detail below.

Basic

Label Name
NVIDIA
Platform
Professional
Launch Date
October 2020
Model Name
RTX A6000
Generation
Quadro
Base Clock
1410MHz
Boost Clock
1800MHz
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
10752
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
84
Transistors
28,300 million
RT Cores
84
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
336
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
336
L1 Cache
128 KB (per SM)
L2 Cache
6MB
Bus Interface
PCIe 4.0 x16
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere
TDP
300W

Memory Specifications

Memory Size
48GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
384bit
Memory Clock
2000MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
768.0 GB/s

Theoretical Performance

Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
201.6 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
604.8 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
38.71 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
1210 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
37.181 TFlops

Miscellaneous

Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
8-pin EPS
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
112
Shader Model
6.6
Suggested PSU
700W

Shadow of the Tomb Raider 2160p

102 Fps

Shadow of the Tomb Raider 1440p

172 Fps

Shadow of the Tomb Raider 1080p

234 Fps

Battlefield 5 1080p

196 Fps

GTA 5 2160p

98 Fps

GTA 5 1440p

100 Fps

GTA 5 1080p

157 Fps

FP32 (float)

37.181 TFlops

3DMark Time Spy

17790

Blender

5670

OctaneBench

589

Vulkan

179181

OpenCL

191030

Compared to Other GPU

SiliconCat Rating

68
Ranks 68 among all GPU on our website
Shadow of the Tomb Raider 2160p
GeForce RTX 4090
NVIDIA, September 2022
195 Fps
RTX A6000
NVIDIA, October 2020
102 Fps
GeForce RTX 2080
NVIDIA, September 2018
45 Fps
Radeon RX 6700M
AMD, May 2021
34 Fps
GeForce RTX 2060
NVIDIA, January 2019
24 Fps
Shadow of the Tomb Raider 1440p
GeForce RTX 4090
NVIDIA, September 2022
289 Fps
RTX A6000
NVIDIA, October 2020
172 Fps
GeForce RTX 3060 8 GB
NVIDIA, October 2022
85 Fps
GeForce RTX 2070
NVIDIA, October 2018
69 Fps
GeForce GTX 1070
NVIDIA, June 2016
49 Fps
Shadow of the Tomb Raider 1080p
GeForce RTX 4090
NVIDIA, September 2022
307 Fps
RTX A6000
NVIDIA, October 2020
234 Fps
GeForce RTX 3070 Ti Mobile
NVIDIA, January 2022
131 Fps
GeForce GTX 1070 Ti
NVIDIA, November 2017
102 Fps
GeForce GTX 1660
NVIDIA, March 2019
74 Fps
Battlefield 5 1080p
GeForce RTX 4090
NVIDIA, September 2022
215 Fps
RTX A6000
NVIDIA, October 2020
196 Fps
GeForce RTX 3060 Ti GDDR6X
NVIDIA, October 2022
166 Fps
Radeon RX 5700 XT
AMD, July 2019
139 Fps
GeForce RTX 2060 SUPER
NVIDIA, July 2019
124 Fps
GTA 5 2160p
Radeon RX 7900 XT
AMD, November 2022
173 Fps
RTX A6000
NVIDIA, October 2020
98 Fps
GeForce RTX 4060 Mobile
NVIDIA, January 2023
78 Fps
GeForce GTX 1660 Ti
NVIDIA, February 2019
59 Fps
GeForce RTX 2050 Mobile
NVIDIA, December 2021
39 Fps
GTA 5 1440p
GeForce RTX 3090 Ti
NVIDIA, January 2022
187 Fps
GeForce RTX 2080 SUPER
NVIDIA, July 2019
116 Fps
RTX A6000
NVIDIA, October 2020
100 Fps
GeForce RTX 4060 Mobile
NVIDIA, January 2023
74 Fps
GeForce RTX 3050 8 GB
NVIDIA, January 2022
47 Fps
GTA 5 1080p
GeForce RTX 3090 Ti
NVIDIA, January 2022
235 Fps
Radeon RX 5700
AMD, July 2019
176 Fps
RTX A6000
NVIDIA, October 2020
157 Fps
GeForce RTX 2060
NVIDIA, January 2019
141 Fps
Radeon RX 550
AMD, April 2017
84 Fps
FP32 (float)
Radeon Instinct MI300
AMD, January 2023
47.856 TFlops
41.969 TFlops
RTX A6000
NVIDIA, October 2020
37.181 TFlops
GeForce RTX 5080 Mobile
NVIDIA, January 2025
33.098 TFlops
L4
NVIDIA, March 2023
30.092 TFlops
3DMark Time Spy
GeForce RTX 4090
NVIDIA, September 2022
36957
RTX A6000
NVIDIA, October 2020
17790
Radeon RX 6800M
AMD, May 2021
11457
9099
GeForce RTX 2070 Mobile
NVIDIA, January 2019
7229
Blender
GeForce RTX 4090
NVIDIA, September 2022
12577
RTX A6000
NVIDIA, October 2020
5670
Radeon RX 6800M
AMD, May 2021
1424
Tesla M40 24 GB
NVIDIA, November 2015
589
Tesla K80
NVIDIA, November 2014
258
OctaneBench
GeForce RTX 4090
NVIDIA, September 2022
1341
RTX A6000
NVIDIA, October 2020
589
Tesla P40
NVIDIA, September 2016
167
GeForce GTX 780
NVIDIA, May 2013
88
T550 Mobile
NVIDIA, May 2022
47
Vulkan
GeForce RTX 4090
NVIDIA, September 2022
254749
RTX A6000
NVIDIA, October 2020
179181
GeForce GTX 1080 Ti
NVIDIA, March 2017
83205
Radeon RX 6550M
AMD, January 2023
54373
GeForce GTX 780 Ti
NVIDIA, November 2013
30994
OpenCL
L40S
NVIDIA, October 2022
362331
RTX A6000
NVIDIA, October 2020
191030
Arc A770M
Intel, January 2022
94927
Radeon RX 6600S
AMD, January 2022
66774
Radeon RX 6550M
AMD, January 2023
46389